Description: The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpbn0.b | |- B = ( Base ` G ) |
|
| grplid.p | |- .+ = ( +g ` G ) |
||
| grplid.o | |- .0. = ( 0g ` G ) |
||
| Assertion | grprid | |- ( ( G e. Grp /\ X e. B ) -> ( X .+ .0. ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpbn0.b | |- B = ( Base ` G ) |
|
| 2 | grplid.p | |- .+ = ( +g ` G ) |
|
| 3 | grplid.o | |- .0. = ( 0g ` G ) |
|
| 4 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
| 5 | 1 2 3 | mndrid | |- ( ( G e. Mnd /\ X e. B ) -> ( X .+ .0. ) = X ) |
| 6 | 4 5 | sylan | |- ( ( G e. Grp /\ X e. B ) -> ( X .+ .0. ) = X ) |