| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinva.c |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
| 2 |
|
grpinva.o |
|- ( ph -> O e. B ) |
| 3 |
|
grpinva.i |
|- ( ( ph /\ x e. B ) -> ( O .+ x ) = x ) |
| 4 |
|
grpinva.a |
|- ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 5 |
|
grpinva.r |
|- ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = O ) |
| 6 |
|
oveq1 |
|- ( y = n -> ( y .+ x ) = ( n .+ x ) ) |
| 7 |
6
|
eqeq1d |
|- ( y = n -> ( ( y .+ x ) = O <-> ( n .+ x ) = O ) ) |
| 8 |
7
|
cbvrexvw |
|- ( E. y e. B ( y .+ x ) = O <-> E. n e. B ( n .+ x ) = O ) |
| 9 |
5 8
|
sylib |
|- ( ( ph /\ x e. B ) -> E. n e. B ( n .+ x ) = O ) |
| 10 |
4
|
caovassg |
|- ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u .+ v ) .+ w ) = ( u .+ ( v .+ w ) ) ) |
| 11 |
10
|
adantlr |
|- ( ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u .+ v ) .+ w ) = ( u .+ ( v .+ w ) ) ) |
| 12 |
|
simprl |
|- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> x e. B ) |
| 13 |
|
simprrl |
|- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> n e. B ) |
| 14 |
11 12 13 12
|
caovassd |
|- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> ( ( x .+ n ) .+ x ) = ( x .+ ( n .+ x ) ) ) |
| 15 |
|
simprrr |
|- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> ( n .+ x ) = O ) |
| 16 |
1 2 3 4 5 12 13 15
|
grpinva |
|- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> ( x .+ n ) = O ) |
| 17 |
16
|
oveq1d |
|- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> ( ( x .+ n ) .+ x ) = ( O .+ x ) ) |
| 18 |
15
|
oveq2d |
|- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> ( x .+ ( n .+ x ) ) = ( x .+ O ) ) |
| 19 |
14 17 18
|
3eqtr3d |
|- ( ( ph /\ ( x e. B /\ ( n e. B /\ ( n .+ x ) = O ) ) ) -> ( O .+ x ) = ( x .+ O ) ) |
| 20 |
19
|
anassrs |
|- ( ( ( ph /\ x e. B ) /\ ( n e. B /\ ( n .+ x ) = O ) ) -> ( O .+ x ) = ( x .+ O ) ) |
| 21 |
9 20
|
rexlimddv |
|- ( ( ph /\ x e. B ) -> ( O .+ x ) = ( x .+ O ) ) |
| 22 |
21 3
|
eqtr3d |
|- ( ( ph /\ x e. B ) -> ( x .+ O ) = x ) |