Description: The identity element of a group is a right identity. Deduction associated with grprid . (Contributed by SN, 29-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpbn0.b | |- B = ( Base ` G ) |
|
| grplid.p | |- .+ = ( +g ` G ) |
||
| grplid.o | |- .0. = ( 0g ` G ) |
||
| grplidd.g | |- ( ph -> G e. Grp ) |
||
| grplidd.1 | |- ( ph -> X e. B ) |
||
| Assertion | grpridd | |- ( ph -> ( X .+ .0. ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpbn0.b | |- B = ( Base ` G ) |
|
| 2 | grplid.p | |- .+ = ( +g ` G ) |
|
| 3 | grplid.o | |- .0. = ( 0g ` G ) |
|
| 4 | grplidd.g | |- ( ph -> G e. Grp ) |
|
| 5 | grplidd.1 | |- ( ph -> X e. B ) |
|
| 6 | 1 2 3 | grprid | |- ( ( G e. Grp /\ X e. B ) -> ( X .+ .0. ) = X ) |
| 7 | 4 5 6 | syl2anc | |- ( ph -> ( X .+ .0. ) = X ) |