Step |
Hyp |
Ref |
Expression |
1 |
|
grpinv.b |
|- B = ( Base ` G ) |
2 |
|
grpinv.p |
|- .+ = ( +g ` G ) |
3 |
|
grpinv.u |
|- .0. = ( 0g ` G ) |
4 |
|
grpinv.n |
|- N = ( invg ` G ) |
5 |
1 2
|
grpcl |
|- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
6 |
1 3
|
grpidcl |
|- ( G e. Grp -> .0. e. B ) |
7 |
1 2 3
|
grplid |
|- ( ( G e. Grp /\ x e. B ) -> ( .0. .+ x ) = x ) |
8 |
1 2
|
grpass |
|- ( ( G e. Grp /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
9 |
1 2 3
|
grpinvex |
|- ( ( G e. Grp /\ x e. B ) -> E. y e. B ( y .+ x ) = .0. ) |
10 |
|
simpr |
|- ( ( G e. Grp /\ X e. B ) -> X e. B ) |
11 |
1 4
|
grpinvcl |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
12 |
1 2 3 4
|
grplinv |
|- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) .+ X ) = .0. ) |
13 |
5 6 7 8 9 10 11 12
|
grprinvd |
|- ( ( G e. Grp /\ X e. B ) -> ( X .+ ( N ` X ) ) = .0. ) |