Metamath Proof Explorer


Theorem grpsgrp

Description: A group is a semigroup. (Contributed by AV, 28-Aug-2021)

Ref Expression
Assertion grpsgrp
|- ( G e. Grp -> G e. Smgrp )

Proof

Step Hyp Ref Expression
1 grpmnd
 |-  ( G e. Grp -> G e. Mnd )
2 mndsgrp
 |-  ( G e. Mnd -> G e. Smgrp )
3 1 2 syl
 |-  ( G e. Grp -> G e. Smgrp )