Step |
Hyp |
Ref |
Expression |
1 |
|
grpss.g |
|- G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
2 |
|
grpss.r |
|- R e. _V |
3 |
|
grpss.s |
|- G C_ R |
4 |
|
grpss.f |
|- Fun R |
5 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
6 |
|
opex |
|- <. ( Base ` ndx ) , B >. e. _V |
7 |
6
|
prid1 |
|- <. ( Base ` ndx ) , B >. e. { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
8 |
7 1
|
eleqtrri |
|- <. ( Base ` ndx ) , B >. e. G |
9 |
2 4 3 5 8
|
strss |
|- ( Base ` R ) = ( Base ` G ) |
10 |
|
plusgid |
|- +g = Slot ( +g ` ndx ) |
11 |
|
opex |
|- <. ( +g ` ndx ) , .+ >. e. _V |
12 |
11
|
prid2 |
|- <. ( +g ` ndx ) , .+ >. e. { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } |
13 |
12 1
|
eleqtrri |
|- <. ( +g ` ndx ) , .+ >. e. G |
14 |
2 4 3 10 13
|
strss |
|- ( +g ` R ) = ( +g ` G ) |
15 |
9 14
|
grpprop |
|- ( R e. Grp <-> G e. Grp ) |
16 |
15
|
bicomi |
|- ( G e. Grp <-> R e. Grp ) |