| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpss.g |  |-  G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } | 
						
							| 2 |  | grpss.r |  |-  R e. _V | 
						
							| 3 |  | grpss.s |  |-  G C_ R | 
						
							| 4 |  | grpss.f |  |-  Fun R | 
						
							| 5 |  | baseid |  |-  Base = Slot ( Base ` ndx ) | 
						
							| 6 |  | opex |  |-  <. ( Base ` ndx ) , B >. e. _V | 
						
							| 7 | 6 | prid1 |  |-  <. ( Base ` ndx ) , B >. e. { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } | 
						
							| 8 | 7 1 | eleqtrri |  |-  <. ( Base ` ndx ) , B >. e. G | 
						
							| 9 | 2 4 3 5 8 | strss |  |-  ( Base ` R ) = ( Base ` G ) | 
						
							| 10 |  | plusgid |  |-  +g = Slot ( +g ` ndx ) | 
						
							| 11 |  | opex |  |-  <. ( +g ` ndx ) , .+ >. e. _V | 
						
							| 12 | 11 | prid2 |  |-  <. ( +g ` ndx ) , .+ >. e. { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } | 
						
							| 13 | 12 1 | eleqtrri |  |-  <. ( +g ` ndx ) , .+ >. e. G | 
						
							| 14 | 2 4 3 10 13 | strss |  |-  ( +g ` R ) = ( +g ` G ) | 
						
							| 15 | 9 14 | grpprop |  |-  ( R e. Grp <-> G e. Grp ) | 
						
							| 16 | 15 | bicomi |  |-  ( G e. Grp <-> R e. Grp ) |