Metamath Proof Explorer


Theorem grpss

Description: Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows us to prove that a constructed potential ring R is a group before we know that it is also a ring. (Theorem ringgrp , on the other hand, requires that we know in advance that R is a ring.) (Contributed by NM, 11-Oct-2013)

Ref Expression
Hypotheses grpss.g
|- G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. }
grpss.r
|- R e. _V
grpss.s
|- G C_ R
grpss.f
|- Fun R
Assertion grpss
|- ( G e. Grp <-> R e. Grp )

Proof

Step Hyp Ref Expression
1 grpss.g
 |-  G = { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. }
2 grpss.r
 |-  R e. _V
3 grpss.s
 |-  G C_ R
4 grpss.f
 |-  Fun R
5 baseid
 |-  Base = Slot ( Base ` ndx )
6 opex
 |-  <. ( Base ` ndx ) , B >. e. _V
7 6 prid1
 |-  <. ( Base ` ndx ) , B >. e. { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. }
8 7 1 eleqtrri
 |-  <. ( Base ` ndx ) , B >. e. G
9 2 4 3 5 8 strss
 |-  ( Base ` R ) = ( Base ` G )
10 plusgid
 |-  +g = Slot ( +g ` ndx )
11 opex
 |-  <. ( +g ` ndx ) , .+ >. e. _V
12 11 prid2
 |-  <. ( +g ` ndx ) , .+ >. e. { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. }
13 12 1 eleqtrri
 |-  <. ( +g ` ndx ) , .+ >. e. G
14 2 4 3 10 13 strss
 |-  ( +g ` R ) = ( +g ` G )
15 9 14 grpprop
 |-  ( R e. Grp <-> G e. Grp )
16 15 bicomi
 |-  ( G e. Grp <-> R e. Grp )