Metamath Proof Explorer


Theorem grpsubcl

Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014)

Ref Expression
Hypotheses grpsubcl.b
|- B = ( Base ` G )
grpsubcl.m
|- .- = ( -g ` G )
Assertion grpsubcl
|- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) e. B )

Proof

Step Hyp Ref Expression
1 grpsubcl.b
 |-  B = ( Base ` G )
2 grpsubcl.m
 |-  .- = ( -g ` G )
3 1 2 grpsubf
 |-  ( G e. Grp -> .- : ( B X. B ) --> B )
4 fovrn
 |-  ( ( .- : ( B X. B ) --> B /\ X e. B /\ Y e. B ) -> ( X .- Y ) e. B )
5 3 4 syl3an1
 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) e. B )