Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpsubcl.b | |- B = ( Base ` G ) |
|
grpsubcl.m | |- .- = ( -g ` G ) |
||
Assertion | grpsubcl | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubcl.b | |- B = ( Base ` G ) |
|
2 | grpsubcl.m | |- .- = ( -g ` G ) |
|
3 | 1 2 | grpsubf | |- ( G e. Grp -> .- : ( B X. B ) --> B ) |
4 | fovrn | |- ( ( .- : ( B X. B ) --> B /\ X e. B /\ Y e. B ) -> ( X .- Y ) e. B ) |
|
5 | 3 4 | syl3an1 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) e. B ) |