| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							grpsubid.b | 
							 |-  B = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							grpsubid.o | 
							 |-  .0. = ( 0g ` G )  | 
						
						
							| 3 | 
							
								
							 | 
							grpsubid.m | 
							 |-  .- = ( -g ` G )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` G ) = ( +g ` G )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( invg ` G ) = ( invg ` G )  | 
						
						
							| 6 | 
							
								1 4 5 3
							 | 
							grpsubval | 
							 |-  ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							3adant1 | 
							 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .- Y ) = ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqeq1d | 
							 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .- Y ) = .0. <-> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) = .0. ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> G e. Grp )  | 
						
						
							| 10 | 
							
								1 5
							 | 
							grpinvcl | 
							 |-  ( ( G e. Grp /\ Y e. B ) -> ( ( invg ` G ) ` Y ) e. B )  | 
						
						
							| 11 | 
							
								10
							 | 
							3adant2 | 
							 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( invg ` G ) ` Y ) e. B )  | 
						
						
							| 12 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> X e. B )  | 
						
						
							| 13 | 
							
								1 4 2 5
							 | 
							grpinvid2 | 
							 |-  ( ( G e. Grp /\ ( ( invg ` G ) ` Y ) e. B /\ X e. B ) -> ( ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) = X <-> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) = .0. ) )  | 
						
						
							| 14 | 
							
								9 11 12 13
							 | 
							syl3anc | 
							 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) = X <-> ( X ( +g ` G ) ( ( invg ` G ) ` Y ) ) = .0. ) )  | 
						
						
							| 15 | 
							
								1 5
							 | 
							grpinvinv | 
							 |-  ( ( G e. Grp /\ Y e. B ) -> ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) = Y )  | 
						
						
							| 16 | 
							
								15
							 | 
							3adant2 | 
							 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) = Y )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqeq1d | 
							 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) = X <-> Y = X ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eqcom | 
							 |-  ( Y = X <-> X = Y )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							bitrdi | 
							 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( ( invg ` G ) ` ( ( invg ` G ) ` Y ) ) = X <-> X = Y ) )  | 
						
						
							| 20 | 
							
								8 14 19
							 | 
							3bitr2d | 
							 |-  ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .- Y ) = .0. <-> X = Y ) )  |