| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpsubval.b |
|- B = ( Base ` G ) |
| 2 |
|
grpsubval.p |
|- .+ = ( +g ` G ) |
| 3 |
|
grpsubval.i |
|- I = ( invg ` G ) |
| 4 |
|
grpsubval.m |
|- .- = ( -g ` G ) |
| 5 |
|
fveq2 |
|- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
| 6 |
5 1
|
eqtr4di |
|- ( g = G -> ( Base ` g ) = B ) |
| 7 |
|
fveq2 |
|- ( g = G -> ( +g ` g ) = ( +g ` G ) ) |
| 8 |
7 2
|
eqtr4di |
|- ( g = G -> ( +g ` g ) = .+ ) |
| 9 |
|
eqidd |
|- ( g = G -> x = x ) |
| 10 |
|
fveq2 |
|- ( g = G -> ( invg ` g ) = ( invg ` G ) ) |
| 11 |
10 3
|
eqtr4di |
|- ( g = G -> ( invg ` g ) = I ) |
| 12 |
11
|
fveq1d |
|- ( g = G -> ( ( invg ` g ) ` y ) = ( I ` y ) ) |
| 13 |
8 9 12
|
oveq123d |
|- ( g = G -> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) = ( x .+ ( I ` y ) ) ) |
| 14 |
6 6 13
|
mpoeq123dv |
|- ( g = G -> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) |
| 15 |
|
df-sbg |
|- -g = ( g e. _V |-> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) ) |
| 16 |
1
|
fvexi |
|- B e. _V |
| 17 |
16 16
|
mpoex |
|- ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) e. _V |
| 18 |
14 15 17
|
fvmpt |
|- ( G e. _V -> ( -g ` G ) = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) |
| 19 |
4 18
|
eqtrid |
|- ( G e. _V -> .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) |
| 20 |
|
fvprc |
|- ( -. G e. _V -> ( -g ` G ) = (/) ) |
| 21 |
4 20
|
eqtrid |
|- ( -. G e. _V -> .- = (/) ) |
| 22 |
|
fvprc |
|- ( -. G e. _V -> ( Base ` G ) = (/) ) |
| 23 |
1 22
|
eqtrid |
|- ( -. G e. _V -> B = (/) ) |
| 24 |
23
|
olcd |
|- ( -. G e. _V -> ( B = (/) \/ B = (/) ) ) |
| 25 |
|
0mpo0 |
|- ( ( B = (/) \/ B = (/) ) -> ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) = (/) ) |
| 26 |
24 25
|
syl |
|- ( -. G e. _V -> ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) = (/) ) |
| 27 |
21 26
|
eqtr4d |
|- ( -. G e. _V -> .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) |
| 28 |
19 27
|
pm2.61i |
|- .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) |