Step |
Hyp |
Ref |
Expression |
1 |
|
grpsubpropd.b |
|- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
2 |
|
grpsubpropd.p |
|- ( ph -> ( +g ` G ) = ( +g ` H ) ) |
3 |
|
eqidd |
|- ( ph -> a = a ) |
4 |
|
eqidd |
|- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
5 |
2
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
6 |
4 1 5
|
grpinvpropd |
|- ( ph -> ( invg ` G ) = ( invg ` H ) ) |
7 |
6
|
fveq1d |
|- ( ph -> ( ( invg ` G ) ` b ) = ( ( invg ` H ) ` b ) ) |
8 |
2 3 7
|
oveq123d |
|- ( ph -> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
9 |
1 1 8
|
mpoeq123dv |
|- ( ph -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
10 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
11 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
12 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
13 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
14 |
10 11 12 13
|
grpsubfval |
|- ( -g ` G ) = ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) |
15 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
16 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
17 |
|
eqid |
|- ( invg ` H ) = ( invg ` H ) |
18 |
|
eqid |
|- ( -g ` H ) = ( -g ` H ) |
19 |
15 16 17 18
|
grpsubfval |
|- ( -g ` H ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
20 |
9 14 19
|
3eqtr4g |
|- ( ph -> ( -g ` G ) = ( -g ` H ) ) |