| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpsubpropd.b |
|- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
| 2 |
|
grpsubpropd.p |
|- ( ph -> ( +g ` G ) = ( +g ` H ) ) |
| 3 |
|
eqidd |
|- ( ph -> a = a ) |
| 4 |
|
eqidd |
|- ( ph -> ( Base ` G ) = ( Base ` G ) ) |
| 5 |
2
|
oveqdr |
|- ( ( ph /\ ( x e. ( Base ` G ) /\ y e. ( Base ` G ) ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
| 6 |
4 1 5
|
grpinvpropd |
|- ( ph -> ( invg ` G ) = ( invg ` H ) ) |
| 7 |
6
|
fveq1d |
|- ( ph -> ( ( invg ` G ) ` b ) = ( ( invg ` H ) ` b ) ) |
| 8 |
2 3 7
|
oveq123d |
|- ( ph -> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
| 9 |
1 1 8
|
mpoeq123dv |
|- ( ph -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
| 10 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 11 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 12 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 13 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
| 14 |
10 11 12 13
|
grpsubfval |
|- ( -g ` G ) = ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) |
| 15 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 16 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
| 17 |
|
eqid |
|- ( invg ` H ) = ( invg ` H ) |
| 18 |
|
eqid |
|- ( -g ` H ) = ( -g ` H ) |
| 19 |
15 16 17 18
|
grpsubfval |
|- ( -g ` H ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
| 20 |
9 14 19
|
3eqtr4g |
|- ( ph -> ( -g ` G ) = ( -g ` H ) ) |