| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpsubpropd2.1 |
|- ( ph -> B = ( Base ` G ) ) |
| 2 |
|
grpsubpropd2.2 |
|- ( ph -> B = ( Base ` H ) ) |
| 3 |
|
grpsubpropd2.3 |
|- ( ph -> G e. Grp ) |
| 4 |
|
grpsubpropd2.4 |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` G ) y ) = ( x ( +g ` H ) y ) ) |
| 5 |
|
simp1 |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ph ) |
| 6 |
|
simp2 |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> a e. ( Base ` G ) ) |
| 7 |
1
|
3ad2ant1 |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> B = ( Base ` G ) ) |
| 8 |
6 7
|
eleqtrrd |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> a e. B ) |
| 9 |
3
|
3ad2ant1 |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> G e. Grp ) |
| 10 |
|
simp3 |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> b e. ( Base ` G ) ) |
| 11 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 12 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 13 |
11 12
|
grpinvcl |
|- ( ( G e. Grp /\ b e. ( Base ` G ) ) -> ( ( invg ` G ) ` b ) e. ( Base ` G ) ) |
| 14 |
9 10 13
|
syl2anc |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( ( invg ` G ) ` b ) e. ( Base ` G ) ) |
| 15 |
14 7
|
eleqtrrd |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( ( invg ` G ) ` b ) e. B ) |
| 16 |
4
|
oveqrspc2v |
|- ( ( ph /\ ( a e. B /\ ( ( invg ` G ) ` b ) e. B ) ) -> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` G ) ` b ) ) ) |
| 17 |
5 8 15 16
|
syl12anc |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` G ) ` b ) ) ) |
| 18 |
1 2 4
|
grpinvpropd |
|- ( ph -> ( invg ` G ) = ( invg ` H ) ) |
| 19 |
18
|
fveq1d |
|- ( ph -> ( ( invg ` G ) ` b ) = ( ( invg ` H ) ` b ) ) |
| 20 |
19
|
oveq2d |
|- ( ph -> ( a ( +g ` H ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
| 21 |
20
|
3ad2ant1 |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( a ( +g ` H ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
| 22 |
17 21
|
eqtrd |
|- ( ( ph /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
| 23 |
22
|
mpoeq3dva |
|- ( ph -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) = ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
| 24 |
1 2
|
eqtr3d |
|- ( ph -> ( Base ` G ) = ( Base ` H ) ) |
| 25 |
|
mpoeq12 |
|- ( ( ( Base ` G ) = ( Base ` H ) /\ ( Base ` G ) = ( Base ` H ) ) -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
| 26 |
24 24 25
|
syl2anc |
|- ( ph -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
| 27 |
23 26
|
eqtrd |
|- ( ph -> ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) ) |
| 28 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 29 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
| 30 |
11 28 12 29
|
grpsubfval |
|- ( -g ` G ) = ( a e. ( Base ` G ) , b e. ( Base ` G ) |-> ( a ( +g ` G ) ( ( invg ` G ) ` b ) ) ) |
| 31 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
| 32 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
| 33 |
|
eqid |
|- ( invg ` H ) = ( invg ` H ) |
| 34 |
|
eqid |
|- ( -g ` H ) = ( -g ` H ) |
| 35 |
31 32 33 34
|
grpsubfval |
|- ( -g ` H ) = ( a e. ( Base ` H ) , b e. ( Base ` H ) |-> ( a ( +g ` H ) ( ( invg ` H ) ` b ) ) ) |
| 36 |
27 30 35
|
3eqtr4g |
|- ( ph -> ( -g ` G ) = ( -g ` H ) ) |