| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpsubval.b |
|- B = ( Base ` G ) |
| 2 |
|
grpsubval.p |
|- .+ = ( +g ` G ) |
| 3 |
|
grpsubval.i |
|- I = ( invg ` G ) |
| 4 |
|
grpsubval.m |
|- .- = ( -g ` G ) |
| 5 |
|
oveq1 |
|- ( x = X -> ( x .+ ( I ` y ) ) = ( X .+ ( I ` y ) ) ) |
| 6 |
|
fveq2 |
|- ( y = Y -> ( I ` y ) = ( I ` Y ) ) |
| 7 |
6
|
oveq2d |
|- ( y = Y -> ( X .+ ( I ` y ) ) = ( X .+ ( I ` Y ) ) ) |
| 8 |
1 2 3 4
|
grpsubfval |
|- .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) |
| 9 |
|
ovex |
|- ( X .+ ( I ` Y ) ) e. _V |
| 10 |
5 7 8 9
|
ovmpo |
|- ( ( X e. B /\ Y e. B ) -> ( X .- Y ) = ( X .+ ( I ` Y ) ) ) |