| Step | Hyp | Ref | Expression | 
						
							| 1 |  | grpvlinv.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | grpvlinv.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | grpvlinv.n |  |-  N = ( invg ` G ) | 
						
							| 4 |  | grpvlinv.z |  |-  .0. = ( 0g ` G ) | 
						
							| 5 |  | elmapex |  |-  ( X e. ( B ^m I ) -> ( B e. _V /\ I e. _V ) ) | 
						
							| 6 | 5 | simprd |  |-  ( X e. ( B ^m I ) -> I e. _V ) | 
						
							| 7 | 6 | adantl |  |-  ( ( G e. Grp /\ X e. ( B ^m I ) ) -> I e. _V ) | 
						
							| 8 |  | elmapi |  |-  ( X e. ( B ^m I ) -> X : I --> B ) | 
						
							| 9 | 8 | adantl |  |-  ( ( G e. Grp /\ X e. ( B ^m I ) ) -> X : I --> B ) | 
						
							| 10 | 1 4 | grpidcl |  |-  ( G e. Grp -> .0. e. B ) | 
						
							| 11 | 10 | adantr |  |-  ( ( G e. Grp /\ X e. ( B ^m I ) ) -> .0. e. B ) | 
						
							| 12 | 1 3 | grpinvf |  |-  ( G e. Grp -> N : B --> B ) | 
						
							| 13 | 12 | adantr |  |-  ( ( G e. Grp /\ X e. ( B ^m I ) ) -> N : B --> B ) | 
						
							| 14 |  | fcompt |  |-  ( ( N : B --> B /\ X : I --> B ) -> ( N o. X ) = ( x e. I |-> ( N ` ( X ` x ) ) ) ) | 
						
							| 15 | 12 8 14 | syl2an |  |-  ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( N o. X ) = ( x e. I |-> ( N ` ( X ` x ) ) ) ) | 
						
							| 16 | 1 2 4 3 | grplinv |  |-  ( ( G e. Grp /\ y e. B ) -> ( ( N ` y ) .+ y ) = .0. ) | 
						
							| 17 | 16 | adantlr |  |-  ( ( ( G e. Grp /\ X e. ( B ^m I ) ) /\ y e. B ) -> ( ( N ` y ) .+ y ) = .0. ) | 
						
							| 18 | 7 9 11 13 15 17 | caofinvl |  |-  ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( ( N o. X ) oF .+ X ) = ( I X. { .0. } ) ) |