Step |
Hyp |
Ref |
Expression |
1 |
|
grtri.v |
|- V = ( Vtx ` G ) |
2 |
|
grtri.e |
|- E = ( Edg ` G ) |
3 |
|
df-grtri |
|- GrTriangles = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) |
4 |
3
|
a1i |
|- ( G e. W -> GrTriangles = ( g e. _V |-> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) ) |
5 |
|
fveq2 |
|- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
6 |
5 1
|
eqtr4di |
|- ( g = G -> ( Vtx ` g ) = V ) |
7 |
|
fveq2 |
|- ( g = G -> ( Edg ` g ) = ( Edg ` G ) ) |
8 |
7 2
|
eqtr4di |
|- ( g = G -> ( Edg ` g ) = E ) |
9 |
8
|
csbeq1d |
|- ( g = G -> [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } = [_ E / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) |
10 |
6 9
|
csbeq12dv |
|- ( g = G -> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } = [_ V / v ]_ [_ E / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) |
11 |
10
|
adantl |
|- ( ( G e. W /\ g = G ) -> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } = [_ V / v ]_ [_ E / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } ) |
12 |
1
|
fvexi |
|- V e. _V |
13 |
2
|
fvexi |
|- E e. _V |
14 |
|
pweq |
|- ( v = V -> ~P v = ~P V ) |
15 |
14
|
adantr |
|- ( ( v = V /\ e = E ) -> ~P v = ~P V ) |
16 |
|
eleq2 |
|- ( e = E -> ( { ( f ` 0 ) , ( f ` 1 ) } e. e <-> { ( f ` 0 ) , ( f ` 1 ) } e. E ) ) |
17 |
|
eleq2 |
|- ( e = E -> ( { ( f ` 0 ) , ( f ` 2 ) } e. e <-> { ( f ` 0 ) , ( f ` 2 ) } e. E ) ) |
18 |
|
eleq2 |
|- ( e = E -> ( { ( f ` 1 ) , ( f ` 2 ) } e. e <-> { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) |
19 |
16 17 18
|
3anbi123d |
|- ( e = E -> ( ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) <-> ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) ) |
20 |
19
|
anbi2d |
|- ( e = E -> ( ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) <-> ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) ) ) |
21 |
20
|
exbidv |
|- ( e = E -> ( E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) <-> E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) ) ) |
22 |
21
|
adantl |
|- ( ( v = V /\ e = E ) -> ( E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) <-> E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) ) ) |
23 |
15 22
|
rabeqbidv |
|- ( ( v = V /\ e = E ) -> { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } = { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) |
24 |
12 13 23
|
csbie2 |
|- [_ V / v ]_ [_ E / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } = { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } |
25 |
11 24
|
eqtrdi |
|- ( ( G e. W /\ g = G ) -> [_ ( Vtx ` g ) / v ]_ [_ ( Edg ` g ) / e ]_ { t e. ~P v | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. e /\ { ( f ` 0 ) , ( f ` 2 ) } e. e /\ { ( f ` 1 ) , ( f ` 2 ) } e. e ) ) } = { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) |
26 |
|
elex |
|- ( G e. W -> G e. _V ) |
27 |
1
|
pweqi |
|- ~P V = ~P ( Vtx ` G ) |
28 |
|
fvex |
|- ( Vtx ` G ) e. _V |
29 |
28
|
pwex |
|- ~P ( Vtx ` G ) e. _V |
30 |
27 29
|
eqeltri |
|- ~P V e. _V |
31 |
30
|
rabex |
|- { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } e. _V |
32 |
31
|
a1i |
|- ( G e. W -> { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } e. _V ) |
33 |
4 25 26 32
|
fvmptd |
|- ( G e. W -> ( GrTriangles ` G ) = { t e. ~P V | E. f ( f : ( 0 ..^ 3 ) -1-1-onto-> t /\ ( { ( f ` 0 ) , ( f ` 1 ) } e. E /\ { ( f ` 0 ) , ( f ` 2 ) } e. E /\ { ( f ` 1 ) , ( f ` 2 ) } e. E ) ) } ) |