Step |
Hyp |
Ref |
Expression |
1 |
|
f1f |
|- ( F : V -1-1-> W -> F : V --> W ) |
2 |
1
|
ffvelcdmda |
|- ( ( F : V -1-1-> W /\ a e. V ) -> ( F ` a ) e. W ) |
3 |
2
|
ex |
|- ( F : V -1-1-> W -> ( a e. V -> ( F ` a ) e. W ) ) |
4 |
1
|
ffvelcdmda |
|- ( ( F : V -1-1-> W /\ b e. V ) -> ( F ` b ) e. W ) |
5 |
4
|
ex |
|- ( F : V -1-1-> W -> ( b e. V -> ( F ` b ) e. W ) ) |
6 |
1
|
ffvelcdmda |
|- ( ( F : V -1-1-> W /\ c e. V ) -> ( F ` c ) e. W ) |
7 |
6
|
ex |
|- ( F : V -1-1-> W -> ( c e. V -> ( F ` c ) e. W ) ) |
8 |
3 5 7
|
3anim123d |
|- ( F : V -1-1-> W -> ( ( a e. V /\ b e. V /\ c e. V ) -> ( ( F ` a ) e. W /\ ( F ` b ) e. W /\ ( F ` c ) e. W ) ) ) |
9 |
8
|
adantrd |
|- ( F : V -1-1-> W -> ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> ( ( F ` a ) e. W /\ ( F ` b ) e. W /\ ( F ` c ) e. W ) ) ) |
10 |
9
|
imp |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( ( F ` a ) e. W /\ ( F ` b ) e. W /\ ( F ` c ) e. W ) ) |
11 |
|
imaeq2 |
|- ( T = { a , b , c } -> ( F " T ) = ( F " { a , b , c } ) ) |
12 |
11
|
ad2antrl |
|- ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> ( F " T ) = ( F " { a , b , c } ) ) |
13 |
12
|
adantl |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( F " T ) = ( F " { a , b , c } ) ) |
14 |
|
f1fn |
|- ( F : V -1-1-> W -> F Fn V ) |
15 |
14
|
adantr |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> F Fn V ) |
16 |
|
simprl1 |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> a e. V ) |
17 |
|
simprl2 |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> b e. V ) |
18 |
|
simprl3 |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> c e. V ) |
19 |
15 16 17 18
|
fnimatpd |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( F " { a , b , c } ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } ) |
20 |
13 19
|
eqtrd |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } ) |
21 |
|
simpl |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> F : V -1-1-> W ) |
22 |
|
tpssi |
|- ( ( a e. V /\ b e. V /\ c e. V ) -> { a , b , c } C_ V ) |
23 |
22
|
adantr |
|- ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> { a , b , c } C_ V ) |
24 |
|
sseq1 |
|- ( T = { a , b , c } -> ( T C_ V <-> { a , b , c } C_ V ) ) |
25 |
24
|
ad2antrl |
|- ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> ( T C_ V <-> { a , b , c } C_ V ) ) |
26 |
23 25
|
mpbird |
|- ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> T C_ V ) |
27 |
26
|
adantl |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> T C_ V ) |
28 |
|
tpex |
|- { a , b , c } e. _V |
29 |
|
eleq1 |
|- ( T = { a , b , c } -> ( T e. _V <-> { a , b , c } e. _V ) ) |
30 |
28 29
|
mpbiri |
|- ( T = { a , b , c } -> T e. _V ) |
31 |
30
|
ad2antrl |
|- ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> T e. _V ) |
32 |
31
|
adantl |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> T e. _V ) |
33 |
|
f1imaeng |
|- ( ( F : V -1-1-> W /\ T C_ V /\ T e. _V ) -> ( F " T ) ~~ T ) |
34 |
|
hasheni |
|- ( ( F " T ) ~~ T -> ( # ` ( F " T ) ) = ( # ` T ) ) |
35 |
33 34
|
syl |
|- ( ( F : V -1-1-> W /\ T C_ V /\ T e. _V ) -> ( # ` ( F " T ) ) = ( # ` T ) ) |
36 |
35
|
eqcomd |
|- ( ( F : V -1-1-> W /\ T C_ V /\ T e. _V ) -> ( # ` T ) = ( # ` ( F " T ) ) ) |
37 |
21 27 32 36
|
syl3anc |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( # ` T ) = ( # ` ( F " T ) ) ) |
38 |
|
simprrr |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( # ` T ) = 3 ) |
39 |
37 38
|
eqtr3d |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( # ` ( F " T ) ) = 3 ) |
40 |
10 20 39
|
3jca |
|- ( ( F : V -1-1-> W /\ ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) ) -> ( ( ( F ` a ) e. W /\ ( F ` b ) e. W /\ ( F ` c ) e. W ) /\ ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 ) ) |
41 |
40
|
ex |
|- ( F : V -1-1-> W -> ( ( ( a e. V /\ b e. V /\ c e. V ) /\ ( T = { a , b , c } /\ ( # ` T ) = 3 ) ) -> ( ( ( F ` a ) e. W /\ ( F ` b ) e. W /\ ( F ` c ) e. W ) /\ ( F " T ) = { ( F ` a ) , ( F ` b ) , ( F ` c ) } /\ ( # ` ( F " T ) ) = 3 ) ) ) |