Metamath Proof Explorer


Theorem grutsk

Description: Grothendieck universes are the same as transitive Tarski classes. (The proof in the forward direction requires Foundation.) (Contributed by Mario Carneiro, 24-Jun-2013)

Ref Expression
Assertion grutsk
|- Univ = { x e. Tarski | Tr x }

Proof

Step Hyp Ref Expression
1 0tsk
 |-  (/) e. Tarski
2 eleq1
 |-  ( y = (/) -> ( y e. Tarski <-> (/) e. Tarski ) )
3 1 2 mpbiri
 |-  ( y = (/) -> y e. Tarski )
4 3 a1i
 |-  ( y e. Univ -> ( y = (/) -> y e. Tarski ) )
5 vex
 |-  y e. _V
6 unir1
 |-  U. ( R1 " On ) = _V
7 5 6 eleqtrri
 |-  y e. U. ( R1 " On )
8 eqid
 |-  ( y i^i On ) = ( y i^i On )
9 8 grur1
 |-  ( ( y e. Univ /\ y e. U. ( R1 " On ) ) -> y = ( R1 ` ( y i^i On ) ) )
10 7 9 mpan2
 |-  ( y e. Univ -> y = ( R1 ` ( y i^i On ) ) )
11 10 adantr
 |-  ( ( y e. Univ /\ y =/= (/) ) -> y = ( R1 ` ( y i^i On ) ) )
12 8 gruina
 |-  ( ( y e. Univ /\ y =/= (/) ) -> ( y i^i On ) e. Inacc )
13 inatsk
 |-  ( ( y i^i On ) e. Inacc -> ( R1 ` ( y i^i On ) ) e. Tarski )
14 12 13 syl
 |-  ( ( y e. Univ /\ y =/= (/) ) -> ( R1 ` ( y i^i On ) ) e. Tarski )
15 11 14 eqeltrd
 |-  ( ( y e. Univ /\ y =/= (/) ) -> y e. Tarski )
16 15 ex
 |-  ( y e. Univ -> ( y =/= (/) -> y e. Tarski ) )
17 4 16 pm2.61dne
 |-  ( y e. Univ -> y e. Tarski )
18 grutr
 |-  ( y e. Univ -> Tr y )
19 17 18 jca
 |-  ( y e. Univ -> ( y e. Tarski /\ Tr y ) )
20 grutsk1
 |-  ( ( y e. Tarski /\ Tr y ) -> y e. Univ )
21 19 20 impbii
 |-  ( y e. Univ <-> ( y e. Tarski /\ Tr y ) )
22 treq
 |-  ( x = y -> ( Tr x <-> Tr y ) )
23 22 elrab
 |-  ( y e. { x e. Tarski | Tr x } <-> ( y e. Tarski /\ Tr y ) )
24 21 23 bitr4i
 |-  ( y e. Univ <-> y e. { x e. Tarski | Tr x } )
25 24 eqriv
 |-  Univ = { x e. Tarski | Tr x }