Metamath Proof Explorer


Theorem gruuni

Description: A Grothendieck universe contains unions of its elements. (Contributed by Mario Carneiro, 17-Jun-2013)

Ref Expression
Assertion gruuni
|- ( ( U e. Univ /\ A e. U ) -> U. A e. U )

Proof

Step Hyp Ref Expression
1 uniiun
 |-  U. A = U_ x e. A x
2 gruelss
 |-  ( ( U e. Univ /\ A e. U ) -> A C_ U )
3 dfss3
 |-  ( A C_ U <-> A. x e. A x e. U )
4 2 3 sylib
 |-  ( ( U e. Univ /\ A e. U ) -> A. x e. A x e. U )
5 gruiun
 |-  ( ( U e. Univ /\ A e. U /\ A. x e. A x e. U ) -> U_ x e. A x e. U )
6 4 5 mpd3an3
 |-  ( ( U e. Univ /\ A e. U ) -> U_ x e. A x e. U )
7 1 6 eqeltrid
 |-  ( ( U e. Univ /\ A e. U ) -> U. A e. U )