Step |
Hyp |
Ref |
Expression |
1 |
|
gsmsymgrfix.s |
|- S = ( SymGrp ` N ) |
2 |
|
gsmsymgrfix.b |
|- B = ( Base ` S ) |
3 |
|
gsmsymgreq.z |
|- Z = ( SymGrp ` M ) |
4 |
|
gsmsymgreq.p |
|- P = ( Base ` Z ) |
5 |
|
gsmsymgreq.i |
|- I = ( N i^i M ) |
6 |
|
fveq2 |
|- ( w = (/) -> ( # ` w ) = ( # ` (/) ) ) |
7 |
6
|
oveq2d |
|- ( w = (/) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` (/) ) ) ) |
8 |
7
|
adantr |
|- ( ( w = (/) /\ u = (/) ) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` (/) ) ) ) |
9 |
|
fveq1 |
|- ( w = (/) -> ( w ` i ) = ( (/) ` i ) ) |
10 |
9
|
fveq1d |
|- ( w = (/) -> ( ( w ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) |
11 |
|
fveq1 |
|- ( u = (/) -> ( u ` i ) = ( (/) ` i ) ) |
12 |
11
|
fveq1d |
|- ( u = (/) -> ( ( u ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) |
13 |
10 12
|
eqeqan12d |
|- ( ( w = (/) /\ u = (/) ) -> ( ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) ) |
14 |
13
|
ralbidv |
|- ( ( w = (/) /\ u = (/) ) -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) ) |
15 |
8 14
|
raleqbidv |
|- ( ( w = (/) /\ u = (/) ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` (/) ) ) A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) ) |
16 |
|
oveq2 |
|- ( w = (/) -> ( S gsum w ) = ( S gsum (/) ) ) |
17 |
16
|
fveq1d |
|- ( w = (/) -> ( ( S gsum w ) ` n ) = ( ( S gsum (/) ) ` n ) ) |
18 |
|
oveq2 |
|- ( u = (/) -> ( Z gsum u ) = ( Z gsum (/) ) ) |
19 |
18
|
fveq1d |
|- ( u = (/) -> ( ( Z gsum u ) ` n ) = ( ( Z gsum (/) ) ` n ) ) |
20 |
17 19
|
eqeqan12d |
|- ( ( w = (/) /\ u = (/) ) -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) |
21 |
20
|
ralbidv |
|- ( ( w = (/) /\ u = (/) ) -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) |
22 |
15 21
|
imbi12d |
|- ( ( w = (/) /\ u = (/) ) -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` (/) ) ) A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) -> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) ) |
23 |
22
|
imbi2d |
|- ( ( w = (/) /\ u = (/) ) -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` (/) ) ) A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) -> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) ) ) |
24 |
|
fveq2 |
|- ( w = x -> ( # ` w ) = ( # ` x ) ) |
25 |
24
|
oveq2d |
|- ( w = x -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` x ) ) ) |
26 |
25
|
adantr |
|- ( ( w = x /\ u = y ) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` x ) ) ) |
27 |
|
fveq1 |
|- ( w = x -> ( w ` i ) = ( x ` i ) ) |
28 |
27
|
fveq1d |
|- ( w = x -> ( ( w ` i ) ` n ) = ( ( x ` i ) ` n ) ) |
29 |
|
fveq1 |
|- ( u = y -> ( u ` i ) = ( y ` i ) ) |
30 |
29
|
fveq1d |
|- ( u = y -> ( ( u ` i ) ` n ) = ( ( y ` i ) ` n ) ) |
31 |
28 30
|
eqeqan12d |
|- ( ( w = x /\ u = y ) -> ( ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) ) ) |
32 |
31
|
ralbidv |
|- ( ( w = x /\ u = y ) -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) ) ) |
33 |
26 32
|
raleqbidv |
|- ( ( w = x /\ u = y ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) ) ) |
34 |
|
oveq2 |
|- ( w = x -> ( S gsum w ) = ( S gsum x ) ) |
35 |
34
|
fveq1d |
|- ( w = x -> ( ( S gsum w ) ` n ) = ( ( S gsum x ) ` n ) ) |
36 |
|
oveq2 |
|- ( u = y -> ( Z gsum u ) = ( Z gsum y ) ) |
37 |
36
|
fveq1d |
|- ( u = y -> ( ( Z gsum u ) ` n ) = ( ( Z gsum y ) ` n ) ) |
38 |
35 37
|
eqeqan12d |
|- ( ( w = x /\ u = y ) -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) |
39 |
38
|
ralbidv |
|- ( ( w = x /\ u = y ) -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) |
40 |
33 39
|
imbi12d |
|- ( ( w = x /\ u = y ) -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) ) |
41 |
40
|
imbi2d |
|- ( ( w = x /\ u = y ) -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) ) ) |
42 |
|
fveq2 |
|- ( w = ( x ++ <" b "> ) -> ( # ` w ) = ( # ` ( x ++ <" b "> ) ) ) |
43 |
42
|
oveq2d |
|- ( w = ( x ++ <" b "> ) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) ) |
44 |
43
|
adantr |
|- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) ) |
45 |
|
fveq1 |
|- ( w = ( x ++ <" b "> ) -> ( w ` i ) = ( ( x ++ <" b "> ) ` i ) ) |
46 |
45
|
fveq1d |
|- ( w = ( x ++ <" b "> ) -> ( ( w ` i ) ` n ) = ( ( ( x ++ <" b "> ) ` i ) ` n ) ) |
47 |
|
fveq1 |
|- ( u = ( y ++ <" p "> ) -> ( u ` i ) = ( ( y ++ <" p "> ) ` i ) ) |
48 |
47
|
fveq1d |
|- ( u = ( y ++ <" p "> ) -> ( ( u ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) ) |
49 |
46 48
|
eqeqan12d |
|- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) ) ) |
50 |
49
|
ralbidv |
|- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) ) ) |
51 |
44 50
|
raleqbidv |
|- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) ) ) |
52 |
|
oveq2 |
|- ( w = ( x ++ <" b "> ) -> ( S gsum w ) = ( S gsum ( x ++ <" b "> ) ) ) |
53 |
52
|
fveq1d |
|- ( w = ( x ++ <" b "> ) -> ( ( S gsum w ) ` n ) = ( ( S gsum ( x ++ <" b "> ) ) ` n ) ) |
54 |
|
oveq2 |
|- ( u = ( y ++ <" p "> ) -> ( Z gsum u ) = ( Z gsum ( y ++ <" p "> ) ) ) |
55 |
54
|
fveq1d |
|- ( u = ( y ++ <" p "> ) -> ( ( Z gsum u ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) |
56 |
53 55
|
eqeqan12d |
|- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) |
57 |
56
|
ralbidv |
|- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) |
58 |
51 57
|
imbi12d |
|- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) |
59 |
58
|
imbi2d |
|- ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) ) |
60 |
|
fveq2 |
|- ( w = W -> ( # ` w ) = ( # ` W ) ) |
61 |
60
|
oveq2d |
|- ( w = W -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` W ) ) ) |
62 |
|
fveq1 |
|- ( w = W -> ( w ` i ) = ( W ` i ) ) |
63 |
62
|
fveq1d |
|- ( w = W -> ( ( w ` i ) ` n ) = ( ( W ` i ) ` n ) ) |
64 |
63
|
eqeq1d |
|- ( w = W -> ( ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) <-> ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) |
65 |
64
|
ralbidv |
|- ( w = W -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) <-> A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) |
66 |
61 65
|
raleqbidv |
|- ( w = W -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) |
67 |
|
oveq2 |
|- ( w = W -> ( S gsum w ) = ( S gsum W ) ) |
68 |
67
|
fveq1d |
|- ( w = W -> ( ( S gsum w ) ` n ) = ( ( S gsum W ) ` n ) ) |
69 |
68
|
eqeq1d |
|- ( w = W -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) <-> ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) |
70 |
69
|
ralbidv |
|- ( w = W -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) <-> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) |
71 |
66 70
|
imbi12d |
|- ( w = W -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) |
72 |
71
|
imbi2d |
|- ( w = W -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) ) |
73 |
|
fveq1 |
|- ( u = U -> ( u ` i ) = ( U ` i ) ) |
74 |
73
|
fveq1d |
|- ( u = U -> ( ( u ` i ) ` n ) = ( ( U ` i ) ` n ) ) |
75 |
74
|
eqeq2d |
|- ( u = U -> ( ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) |
76 |
75
|
ralbidv |
|- ( u = U -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) |
77 |
76
|
ralbidv |
|- ( u = U -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) |
78 |
|
oveq2 |
|- ( u = U -> ( Z gsum u ) = ( Z gsum U ) ) |
79 |
78
|
fveq1d |
|- ( u = U -> ( ( Z gsum u ) ` n ) = ( ( Z gsum U ) ` n ) ) |
80 |
79
|
eqeq2d |
|- ( u = U -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) |
81 |
80
|
ralbidv |
|- ( u = U -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) |
82 |
77 81
|
imbi12d |
|- ( u = U -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) |
83 |
82
|
imbi2d |
|- ( u = U -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) ) |
84 |
|
eleq2 |
|- ( I = ( N i^i M ) -> ( n e. I <-> n e. ( N i^i M ) ) ) |
85 |
|
elin |
|- ( n e. ( N i^i M ) <-> ( n e. N /\ n e. M ) ) |
86 |
84 85
|
bitrdi |
|- ( I = ( N i^i M ) -> ( n e. I <-> ( n e. N /\ n e. M ) ) ) |
87 |
|
simpl |
|- ( ( n e. N /\ n e. M ) -> n e. N ) |
88 |
86 87
|
syl6bi |
|- ( I = ( N i^i M ) -> ( n e. I -> n e. N ) ) |
89 |
5 88
|
ax-mp |
|- ( n e. I -> n e. N ) |
90 |
89
|
adantl |
|- ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> n e. N ) |
91 |
|
fvresi |
|- ( n e. N -> ( ( _I |` N ) ` n ) = n ) |
92 |
90 91
|
syl |
|- ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> ( ( _I |` N ) ` n ) = n ) |
93 |
|
simpr |
|- ( ( n e. N /\ n e. M ) -> n e. M ) |
94 |
86 93
|
syl6bi |
|- ( I = ( N i^i M ) -> ( n e. I -> n e. M ) ) |
95 |
5 94
|
ax-mp |
|- ( n e. I -> n e. M ) |
96 |
95
|
adantl |
|- ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> n e. M ) |
97 |
|
fvresi |
|- ( n e. M -> ( ( _I |` M ) ` n ) = n ) |
98 |
96 97
|
syl |
|- ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> ( ( _I |` M ) ` n ) = n ) |
99 |
92 98
|
eqtr4d |
|- ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> ( ( _I |` N ) ` n ) = ( ( _I |` M ) ` n ) ) |
100 |
99
|
ralrimiva |
|- ( ( N e. Fin /\ M e. Fin ) -> A. n e. I ( ( _I |` N ) ` n ) = ( ( _I |` M ) ` n ) ) |
101 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
102 |
101
|
gsum0 |
|- ( S gsum (/) ) = ( 0g ` S ) |
103 |
1
|
symgid |
|- ( N e. Fin -> ( _I |` N ) = ( 0g ` S ) ) |
104 |
103
|
adantr |
|- ( ( N e. Fin /\ M e. Fin ) -> ( _I |` N ) = ( 0g ` S ) ) |
105 |
102 104
|
eqtr4id |
|- ( ( N e. Fin /\ M e. Fin ) -> ( S gsum (/) ) = ( _I |` N ) ) |
106 |
105
|
fveq1d |
|- ( ( N e. Fin /\ M e. Fin ) -> ( ( S gsum (/) ) ` n ) = ( ( _I |` N ) ` n ) ) |
107 |
|
eqid |
|- ( 0g ` Z ) = ( 0g ` Z ) |
108 |
107
|
gsum0 |
|- ( Z gsum (/) ) = ( 0g ` Z ) |
109 |
3
|
symgid |
|- ( M e. Fin -> ( _I |` M ) = ( 0g ` Z ) ) |
110 |
109
|
adantl |
|- ( ( N e. Fin /\ M e. Fin ) -> ( _I |` M ) = ( 0g ` Z ) ) |
111 |
108 110
|
eqtr4id |
|- ( ( N e. Fin /\ M e. Fin ) -> ( Z gsum (/) ) = ( _I |` M ) ) |
112 |
111
|
fveq1d |
|- ( ( N e. Fin /\ M e. Fin ) -> ( ( Z gsum (/) ) ` n ) = ( ( _I |` M ) ` n ) ) |
113 |
106 112
|
eqeq12d |
|- ( ( N e. Fin /\ M e. Fin ) -> ( ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) <-> ( ( _I |` N ) ` n ) = ( ( _I |` M ) ` n ) ) ) |
114 |
113
|
ralbidv |
|- ( ( N e. Fin /\ M e. Fin ) -> ( A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) <-> A. n e. I ( ( _I |` N ) ` n ) = ( ( _I |` M ) ` n ) ) ) |
115 |
100 114
|
mpbird |
|- ( ( N e. Fin /\ M e. Fin ) -> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) |
116 |
115
|
a1d |
|- ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` (/) ) ) A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) -> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) |
117 |
1 2 3 4 5
|
gsmsymgreqlem2 |
|- ( ( ( N e. Fin /\ M e. Fin ) /\ ( ( x e. Word B /\ b e. B ) /\ ( y e. Word P /\ p e. P ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) -> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) |
118 |
117
|
expcom |
|- ( ( ( x e. Word B /\ b e. B ) /\ ( y e. Word P /\ p e. P ) /\ ( # ` x ) = ( # ` y ) ) -> ( ( N e. Fin /\ M e. Fin ) -> ( ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) -> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) ) |
119 |
118
|
a2d |
|- ( ( ( x e. Word B /\ b e. B ) /\ ( y e. Word P /\ p e. P ) /\ ( # ` x ) = ( # ` y ) ) -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) -> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) ) |
120 |
23 41 59 72 83 116 119
|
wrd2ind |
|- ( ( W e. Word B /\ U e. Word P /\ ( # ` W ) = ( # ` U ) ) -> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) |
121 |
120
|
impcom |
|- ( ( ( N e. Fin /\ M e. Fin ) /\ ( W e. Word B /\ U e. Word P /\ ( # ` W ) = ( # ` U ) ) ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) |