Step |
Hyp |
Ref |
Expression |
1 |
|
gsmtrcl.s |
|- S = ( SymGrp ` N ) |
2 |
|
gsmtrcl.b |
|- B = ( Base ` S ) |
3 |
|
gsmtrcl.t |
|- T = ran ( pmTrsp ` N ) |
4 |
|
eqid |
|- ( pmSgn ` N ) = ( pmSgn ` N ) |
5 |
1 3 4
|
psgneldm2i |
|- ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. dom ( pmSgn ` N ) ) |
6 |
1 4 2
|
psgneldm |
|- ( ( S gsum W ) e. dom ( pmSgn ` N ) <-> ( ( S gsum W ) e. B /\ dom ( ( S gsum W ) \ _I ) e. Fin ) ) |
7 |
|
ax-1 |
|- ( ( S gsum W ) e. B -> ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) ) |
8 |
7
|
adantr |
|- ( ( ( S gsum W ) e. B /\ dom ( ( S gsum W ) \ _I ) e. Fin ) -> ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) ) |
9 |
6 8
|
sylbi |
|- ( ( S gsum W ) e. dom ( pmSgn ` N ) -> ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) ) |
10 |
5 9
|
mpcom |
|- ( ( N e. Fin /\ W e. Word T ) -> ( S gsum W ) e. B ) |