Step |
Hyp |
Ref |
Expression |
1 |
|
gsum0.z |
|- .0. = ( 0g ` G ) |
2 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
3 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
4 |
|
eqid |
|- { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } = { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } |
5 |
|
id |
|- ( G e. _V -> G e. _V ) |
6 |
|
0ex |
|- (/) e. _V |
7 |
6
|
a1i |
|- ( G e. _V -> (/) e. _V ) |
8 |
|
f0 |
|- (/) : (/) --> { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } |
9 |
8
|
a1i |
|- ( G e. _V -> (/) : (/) --> { x e. ( Base ` G ) | A. y e. ( Base ` G ) ( ( x ( +g ` G ) y ) = y /\ ( y ( +g ` G ) x ) = y ) } ) |
10 |
2 1 3 4 5 7 9
|
gsumval1 |
|- ( G e. _V -> ( G gsum (/) ) = .0. ) |
11 |
|
df-gsum |
|- gsum = ( w e. _V , f e. _V |-> [_ { x e. ( Base ` w ) | A. y e. ( Base ` w ) ( ( x ( +g ` w ) y ) = y /\ ( y ( +g ` w ) x ) = y ) } / o ]_ if ( ran f C_ o , ( 0g ` w ) , if ( dom f e. ran ... , ( iota x E. m E. n e. ( ZZ>= ` m ) ( dom f = ( m ... n ) /\ x = ( seq m ( ( +g ` w ) , f ) ` n ) ) ) , ( iota x E. g [. ( `' f " ( _V \ o ) ) / y ]. ( g : ( 1 ... ( # ` y ) ) -1-1-onto-> y /\ x = ( seq 1 ( ( +g ` w ) , ( f o. g ) ) ` ( # ` y ) ) ) ) ) ) ) |
12 |
11
|
reldmmpo |
|- Rel dom gsum |
13 |
12
|
ovprc1 |
|- ( -. G e. _V -> ( G gsum (/) ) = (/) ) |
14 |
|
fvprc |
|- ( -. G e. _V -> ( 0g ` G ) = (/) ) |
15 |
1 14
|
eqtrid |
|- ( -. G e. _V -> .0. = (/) ) |
16 |
13 15
|
eqtr4d |
|- ( -. G e. _V -> ( G gsum (/) ) = .0. ) |
17 |
10 16
|
pm2.61i |
|- ( G gsum (/) ) = .0. |