Step |
Hyp |
Ref |
Expression |
1 |
|
gsum2d.b |
|- B = ( Base ` G ) |
2 |
|
gsum2d.z |
|- .0. = ( 0g ` G ) |
3 |
|
gsum2d.g |
|- ( ph -> G e. CMnd ) |
4 |
|
gsum2d.a |
|- ( ph -> A e. V ) |
5 |
|
gsum2d.r |
|- ( ph -> Rel A ) |
6 |
|
gsum2d.d |
|- ( ph -> D e. W ) |
7 |
|
gsum2d.s |
|- ( ph -> dom A C_ D ) |
8 |
|
gsum2d.f |
|- ( ph -> F : A --> B ) |
9 |
|
gsum2d.w |
|- ( ph -> F finSupp .0. ) |
10 |
1 2 3 4 5 6 7 8 9
|
gsum2dlem2 |
|- ( ph -> ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
11 |
|
suppssdm |
|- ( F supp .0. ) C_ dom F |
12 |
11 8
|
fssdm |
|- ( ph -> ( F supp .0. ) C_ A ) |
13 |
|
relss |
|- ( ( F supp .0. ) C_ A -> ( Rel A -> Rel ( F supp .0. ) ) ) |
14 |
12 5 13
|
sylc |
|- ( ph -> Rel ( F supp .0. ) ) |
15 |
|
relssdmrn |
|- ( Rel ( F supp .0. ) -> ( F supp .0. ) C_ ( dom ( F supp .0. ) X. ran ( F supp .0. ) ) ) |
16 |
|
ssv |
|- ran ( F supp .0. ) C_ _V |
17 |
|
xpss2 |
|- ( ran ( F supp .0. ) C_ _V -> ( dom ( F supp .0. ) X. ran ( F supp .0. ) ) C_ ( dom ( F supp .0. ) X. _V ) ) |
18 |
16 17
|
ax-mp |
|- ( dom ( F supp .0. ) X. ran ( F supp .0. ) ) C_ ( dom ( F supp .0. ) X. _V ) |
19 |
15 18
|
sstrdi |
|- ( Rel ( F supp .0. ) -> ( F supp .0. ) C_ ( dom ( F supp .0. ) X. _V ) ) |
20 |
14 19
|
syl |
|- ( ph -> ( F supp .0. ) C_ ( dom ( F supp .0. ) X. _V ) ) |
21 |
12 20
|
ssind |
|- ( ph -> ( F supp .0. ) C_ ( A i^i ( dom ( F supp .0. ) X. _V ) ) ) |
22 |
|
df-res |
|- ( A |` dom ( F supp .0. ) ) = ( A i^i ( dom ( F supp .0. ) X. _V ) ) |
23 |
21 22
|
sseqtrrdi |
|- ( ph -> ( F supp .0. ) C_ ( A |` dom ( F supp .0. ) ) ) |
24 |
1 2 3 4 8 23 9
|
gsumres |
|- ( ph -> ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) = ( G gsum F ) ) |
25 |
|
dmss |
|- ( ( F supp .0. ) C_ A -> dom ( F supp .0. ) C_ dom A ) |
26 |
12 25
|
syl |
|- ( ph -> dom ( F supp .0. ) C_ dom A ) |
27 |
26 7
|
sstrd |
|- ( ph -> dom ( F supp .0. ) C_ D ) |
28 |
27
|
resmptd |
|- ( ph -> ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) |` dom ( F supp .0. ) ) = ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) |
29 |
28
|
oveq2d |
|- ( ph -> ( G gsum ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) |` dom ( F supp .0. ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
30 |
1 2 3 4 5 6 7 8 9
|
gsum2dlem1 |
|- ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B ) |
31 |
30
|
adantr |
|- ( ( ph /\ j e. D ) -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B ) |
32 |
31
|
fmpttd |
|- ( ph -> ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) : D --> B ) |
33 |
|
vex |
|- j e. _V |
34 |
|
vex |
|- k e. _V |
35 |
33 34
|
elimasn |
|- ( k e. ( A " { j } ) <-> <. j , k >. e. A ) |
36 |
35
|
biimpi |
|- ( k e. ( A " { j } ) -> <. j , k >. e. A ) |
37 |
36
|
ad2antll |
|- ( ( ph /\ ( j e. ( D \ dom ( F supp .0. ) ) /\ k e. ( A " { j } ) ) ) -> <. j , k >. e. A ) |
38 |
|
eldifn |
|- ( j e. ( D \ dom ( F supp .0. ) ) -> -. j e. dom ( F supp .0. ) ) |
39 |
38
|
ad2antrl |
|- ( ( ph /\ ( j e. ( D \ dom ( F supp .0. ) ) /\ k e. ( A " { j } ) ) ) -> -. j e. dom ( F supp .0. ) ) |
40 |
33 34
|
opeldm |
|- ( <. j , k >. e. ( F supp .0. ) -> j e. dom ( F supp .0. ) ) |
41 |
39 40
|
nsyl |
|- ( ( ph /\ ( j e. ( D \ dom ( F supp .0. ) ) /\ k e. ( A " { j } ) ) ) -> -. <. j , k >. e. ( F supp .0. ) ) |
42 |
37 41
|
eldifd |
|- ( ( ph /\ ( j e. ( D \ dom ( F supp .0. ) ) /\ k e. ( A " { j } ) ) ) -> <. j , k >. e. ( A \ ( F supp .0. ) ) ) |
43 |
|
df-ov |
|- ( j F k ) = ( F ` <. j , k >. ) |
44 |
|
ssidd |
|- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
45 |
2
|
fvexi |
|- .0. e. _V |
46 |
45
|
a1i |
|- ( ph -> .0. e. _V ) |
47 |
8 44 4 46
|
suppssr |
|- ( ( ph /\ <. j , k >. e. ( A \ ( F supp .0. ) ) ) -> ( F ` <. j , k >. ) = .0. ) |
48 |
43 47
|
eqtrid |
|- ( ( ph /\ <. j , k >. e. ( A \ ( F supp .0. ) ) ) -> ( j F k ) = .0. ) |
49 |
42 48
|
syldan |
|- ( ( ph /\ ( j e. ( D \ dom ( F supp .0. ) ) /\ k e. ( A " { j } ) ) ) -> ( j F k ) = .0. ) |
50 |
49
|
anassrs |
|- ( ( ( ph /\ j e. ( D \ dom ( F supp .0. ) ) ) /\ k e. ( A " { j } ) ) -> ( j F k ) = .0. ) |
51 |
50
|
mpteq2dva |
|- ( ( ph /\ j e. ( D \ dom ( F supp .0. ) ) ) -> ( k e. ( A " { j } ) |-> ( j F k ) ) = ( k e. ( A " { j } ) |-> .0. ) ) |
52 |
51
|
oveq2d |
|- ( ( ph /\ j e. ( D \ dom ( F supp .0. ) ) ) -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) = ( G gsum ( k e. ( A " { j } ) |-> .0. ) ) ) |
53 |
|
cmnmnd |
|- ( G e. CMnd -> G e. Mnd ) |
54 |
3 53
|
syl |
|- ( ph -> G e. Mnd ) |
55 |
|
imaexg |
|- ( A e. V -> ( A " { j } ) e. _V ) |
56 |
4 55
|
syl |
|- ( ph -> ( A " { j } ) e. _V ) |
57 |
2
|
gsumz |
|- ( ( G e. Mnd /\ ( A " { j } ) e. _V ) -> ( G gsum ( k e. ( A " { j } ) |-> .0. ) ) = .0. ) |
58 |
54 56 57
|
syl2anc |
|- ( ph -> ( G gsum ( k e. ( A " { j } ) |-> .0. ) ) = .0. ) |
59 |
58
|
adantr |
|- ( ( ph /\ j e. ( D \ dom ( F supp .0. ) ) ) -> ( G gsum ( k e. ( A " { j } ) |-> .0. ) ) = .0. ) |
60 |
52 59
|
eqtrd |
|- ( ( ph /\ j e. ( D \ dom ( F supp .0. ) ) ) -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) = .0. ) |
61 |
60 6
|
suppss2 |
|- ( ph -> ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) supp .0. ) C_ dom ( F supp .0. ) ) |
62 |
|
funmpt |
|- Fun ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) |
63 |
62
|
a1i |
|- ( ph -> Fun ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) |
64 |
9
|
fsuppimpd |
|- ( ph -> ( F supp .0. ) e. Fin ) |
65 |
|
dmfi |
|- ( ( F supp .0. ) e. Fin -> dom ( F supp .0. ) e. Fin ) |
66 |
64 65
|
syl |
|- ( ph -> dom ( F supp .0. ) e. Fin ) |
67 |
66 61
|
ssfid |
|- ( ph -> ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) supp .0. ) e. Fin ) |
68 |
6
|
mptexd |
|- ( ph -> ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) e. _V ) |
69 |
|
isfsupp |
|- ( ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) e. _V /\ .0. e. _V ) -> ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) finSupp .0. <-> ( Fun ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) /\ ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) supp .0. ) e. Fin ) ) ) |
70 |
68 46 69
|
syl2anc |
|- ( ph -> ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) finSupp .0. <-> ( Fun ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) /\ ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) supp .0. ) e. Fin ) ) ) |
71 |
63 67 70
|
mpbir2and |
|- ( ph -> ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) finSupp .0. ) |
72 |
1 2 3 6 32 61 71
|
gsumres |
|- ( ph -> ( G gsum ( ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) |` dom ( F supp .0. ) ) ) = ( G gsum ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
73 |
29 72
|
eqtr3d |
|- ( ph -> ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) = ( G gsum ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
74 |
10 24 73
|
3eqtr3d |
|- ( ph -> ( G gsum F ) = ( G gsum ( j e. D |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |