Step |
Hyp |
Ref |
Expression |
1 |
|
gsum2d.b |
|- B = ( Base ` G ) |
2 |
|
gsum2d.z |
|- .0. = ( 0g ` G ) |
3 |
|
gsum2d.g |
|- ( ph -> G e. CMnd ) |
4 |
|
gsum2d.a |
|- ( ph -> A e. V ) |
5 |
|
gsum2d.r |
|- ( ph -> Rel A ) |
6 |
|
gsum2d.d |
|- ( ph -> D e. W ) |
7 |
|
gsum2d.s |
|- ( ph -> dom A C_ D ) |
8 |
|
gsum2d.f |
|- ( ph -> F : A --> B ) |
9 |
|
gsum2d.w |
|- ( ph -> F finSupp .0. ) |
10 |
|
imaexg |
|- ( A e. V -> ( A " { j } ) e. _V ) |
11 |
4 10
|
syl |
|- ( ph -> ( A " { j } ) e. _V ) |
12 |
|
vex |
|- j e. _V |
13 |
|
vex |
|- k e. _V |
14 |
12 13
|
elimasn |
|- ( k e. ( A " { j } ) <-> <. j , k >. e. A ) |
15 |
|
df-ov |
|- ( j F k ) = ( F ` <. j , k >. ) |
16 |
8
|
ffvelrnda |
|- ( ( ph /\ <. j , k >. e. A ) -> ( F ` <. j , k >. ) e. B ) |
17 |
15 16
|
eqeltrid |
|- ( ( ph /\ <. j , k >. e. A ) -> ( j F k ) e. B ) |
18 |
14 17
|
sylan2b |
|- ( ( ph /\ k e. ( A " { j } ) ) -> ( j F k ) e. B ) |
19 |
18
|
fmpttd |
|- ( ph -> ( k e. ( A " { j } ) |-> ( j F k ) ) : ( A " { j } ) --> B ) |
20 |
9
|
fsuppimpd |
|- ( ph -> ( F supp .0. ) e. Fin ) |
21 |
|
rnfi |
|- ( ( F supp .0. ) e. Fin -> ran ( F supp .0. ) e. Fin ) |
22 |
20 21
|
syl |
|- ( ph -> ran ( F supp .0. ) e. Fin ) |
23 |
14
|
biimpi |
|- ( k e. ( A " { j } ) -> <. j , k >. e. A ) |
24 |
12 13
|
opelrn |
|- ( <. j , k >. e. ( F supp .0. ) -> k e. ran ( F supp .0. ) ) |
25 |
24
|
con3i |
|- ( -. k e. ran ( F supp .0. ) -> -. <. j , k >. e. ( F supp .0. ) ) |
26 |
23 25
|
anim12i |
|- ( ( k e. ( A " { j } ) /\ -. k e. ran ( F supp .0. ) ) -> ( <. j , k >. e. A /\ -. <. j , k >. e. ( F supp .0. ) ) ) |
27 |
|
eldif |
|- ( k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) <-> ( k e. ( A " { j } ) /\ -. k e. ran ( F supp .0. ) ) ) |
28 |
|
eldif |
|- ( <. j , k >. e. ( A \ ( F supp .0. ) ) <-> ( <. j , k >. e. A /\ -. <. j , k >. e. ( F supp .0. ) ) ) |
29 |
26 27 28
|
3imtr4i |
|- ( k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) -> <. j , k >. e. ( A \ ( F supp .0. ) ) ) |
30 |
|
ssidd |
|- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
31 |
2
|
fvexi |
|- .0. e. _V |
32 |
31
|
a1i |
|- ( ph -> .0. e. _V ) |
33 |
8 30 4 32
|
suppssr |
|- ( ( ph /\ <. j , k >. e. ( A \ ( F supp .0. ) ) ) -> ( F ` <. j , k >. ) = .0. ) |
34 |
15 33
|
eqtrid |
|- ( ( ph /\ <. j , k >. e. ( A \ ( F supp .0. ) ) ) -> ( j F k ) = .0. ) |
35 |
29 34
|
sylan2 |
|- ( ( ph /\ k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) ) -> ( j F k ) = .0. ) |
36 |
35 11
|
suppss2 |
|- ( ph -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) supp .0. ) C_ ran ( F supp .0. ) ) |
37 |
22 36
|
ssfid |
|- ( ph -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) supp .0. ) e. Fin ) |
38 |
1 2 3 11 19 37
|
gsumcl2 |
|- ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B ) |