| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsum2d.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsum2d.z |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | gsum2d.g |  |-  ( ph -> G e. CMnd ) | 
						
							| 4 |  | gsum2d.a |  |-  ( ph -> A e. V ) | 
						
							| 5 |  | gsum2d.r |  |-  ( ph -> Rel A ) | 
						
							| 6 |  | gsum2d.d |  |-  ( ph -> D e. W ) | 
						
							| 7 |  | gsum2d.s |  |-  ( ph -> dom A C_ D ) | 
						
							| 8 |  | gsum2d.f |  |-  ( ph -> F : A --> B ) | 
						
							| 9 |  | gsum2d.w |  |-  ( ph -> F finSupp .0. ) | 
						
							| 10 |  | imaexg |  |-  ( A e. V -> ( A " { j } ) e. _V ) | 
						
							| 11 | 4 10 | syl |  |-  ( ph -> ( A " { j } ) e. _V ) | 
						
							| 12 |  | vex |  |-  j e. _V | 
						
							| 13 |  | vex |  |-  k e. _V | 
						
							| 14 | 12 13 | elimasn |  |-  ( k e. ( A " { j } ) <-> <. j , k >. e. A ) | 
						
							| 15 |  | df-ov |  |-  ( j F k ) = ( F ` <. j , k >. ) | 
						
							| 16 | 8 | ffvelcdmda |  |-  ( ( ph /\ <. j , k >. e. A ) -> ( F ` <. j , k >. ) e. B ) | 
						
							| 17 | 15 16 | eqeltrid |  |-  ( ( ph /\ <. j , k >. e. A ) -> ( j F k ) e. B ) | 
						
							| 18 | 14 17 | sylan2b |  |-  ( ( ph /\ k e. ( A " { j } ) ) -> ( j F k ) e. B ) | 
						
							| 19 | 18 | fmpttd |  |-  ( ph -> ( k e. ( A " { j } ) |-> ( j F k ) ) : ( A " { j } ) --> B ) | 
						
							| 20 | 9 | fsuppimpd |  |-  ( ph -> ( F supp .0. ) e. Fin ) | 
						
							| 21 |  | rnfi |  |-  ( ( F supp .0. ) e. Fin -> ran ( F supp .0. ) e. Fin ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> ran ( F supp .0. ) e. Fin ) | 
						
							| 23 | 14 | biimpi |  |-  ( k e. ( A " { j } ) -> <. j , k >. e. A ) | 
						
							| 24 | 12 13 | opelrn |  |-  ( <. j , k >. e. ( F supp .0. ) -> k e. ran ( F supp .0. ) ) | 
						
							| 25 | 24 | con3i |  |-  ( -. k e. ran ( F supp .0. ) -> -. <. j , k >. e. ( F supp .0. ) ) | 
						
							| 26 | 23 25 | anim12i |  |-  ( ( k e. ( A " { j } ) /\ -. k e. ran ( F supp .0. ) ) -> ( <. j , k >. e. A /\ -. <. j , k >. e. ( F supp .0. ) ) ) | 
						
							| 27 |  | eldif |  |-  ( k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) <-> ( k e. ( A " { j } ) /\ -. k e. ran ( F supp .0. ) ) ) | 
						
							| 28 |  | eldif |  |-  ( <. j , k >. e. ( A \ ( F supp .0. ) ) <-> ( <. j , k >. e. A /\ -. <. j , k >. e. ( F supp .0. ) ) ) | 
						
							| 29 | 26 27 28 | 3imtr4i |  |-  ( k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) -> <. j , k >. e. ( A \ ( F supp .0. ) ) ) | 
						
							| 30 |  | ssidd |  |-  ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) | 
						
							| 31 | 2 | fvexi |  |-  .0. e. _V | 
						
							| 32 | 31 | a1i |  |-  ( ph -> .0. e. _V ) | 
						
							| 33 | 8 30 4 32 | suppssr |  |-  ( ( ph /\ <. j , k >. e. ( A \ ( F supp .0. ) ) ) -> ( F ` <. j , k >. ) = .0. ) | 
						
							| 34 | 15 33 | eqtrid |  |-  ( ( ph /\ <. j , k >. e. ( A \ ( F supp .0. ) ) ) -> ( j F k ) = .0. ) | 
						
							| 35 | 29 34 | sylan2 |  |-  ( ( ph /\ k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) ) -> ( j F k ) = .0. ) | 
						
							| 36 | 35 11 | suppss2 |  |-  ( ph -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) supp .0. ) C_ ran ( F supp .0. ) ) | 
						
							| 37 | 22 36 | ssfid |  |-  ( ph -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) supp .0. ) e. Fin ) | 
						
							| 38 | 1 2 3 11 19 37 | gsumcl2 |  |-  ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B ) |