Step |
Hyp |
Ref |
Expression |
1 |
|
gsumccat.b |
|- B = ( Base ` G ) |
2 |
|
gsumccat.p |
|- .+ = ( +g ` G ) |
3 |
|
oveq1 |
|- ( W = (/) -> ( W ++ X ) = ( (/) ++ X ) ) |
4 |
3
|
oveq2d |
|- ( W = (/) -> ( G gsum ( W ++ X ) ) = ( G gsum ( (/) ++ X ) ) ) |
5 |
|
oveq2 |
|- ( W = (/) -> ( G gsum W ) = ( G gsum (/) ) ) |
6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
7 |
6
|
gsum0 |
|- ( G gsum (/) ) = ( 0g ` G ) |
8 |
5 7
|
eqtrdi |
|- ( W = (/) -> ( G gsum W ) = ( 0g ` G ) ) |
9 |
8
|
oveq1d |
|- ( W = (/) -> ( ( G gsum W ) .+ ( G gsum X ) ) = ( ( 0g ` G ) .+ ( G gsum X ) ) ) |
10 |
4 9
|
eqeq12d |
|- ( W = (/) -> ( ( G gsum ( W ++ X ) ) = ( ( G gsum W ) .+ ( G gsum X ) ) <-> ( G gsum ( (/) ++ X ) ) = ( ( 0g ` G ) .+ ( G gsum X ) ) ) ) |
11 |
|
oveq2 |
|- ( X = (/) -> ( W ++ X ) = ( W ++ (/) ) ) |
12 |
11
|
oveq2d |
|- ( X = (/) -> ( G gsum ( W ++ X ) ) = ( G gsum ( W ++ (/) ) ) ) |
13 |
|
oveq2 |
|- ( X = (/) -> ( G gsum X ) = ( G gsum (/) ) ) |
14 |
13 7
|
eqtrdi |
|- ( X = (/) -> ( G gsum X ) = ( 0g ` G ) ) |
15 |
14
|
oveq2d |
|- ( X = (/) -> ( ( G gsum W ) .+ ( G gsum X ) ) = ( ( G gsum W ) .+ ( 0g ` G ) ) ) |
16 |
12 15
|
eqeq12d |
|- ( X = (/) -> ( ( G gsum ( W ++ X ) ) = ( ( G gsum W ) .+ ( G gsum X ) ) <-> ( G gsum ( W ++ (/) ) ) = ( ( G gsum W ) .+ ( 0g ` G ) ) ) ) |
17 |
|
mndsgrp |
|- ( G e. Mnd -> G e. Smgrp ) |
18 |
17
|
3ad2ant1 |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> G e. Smgrp ) |
19 |
18
|
ad2antrr |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) /\ X =/= (/) ) -> G e. Smgrp ) |
20 |
|
3simpc |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> ( W e. Word B /\ X e. Word B ) ) |
21 |
20
|
ad2antrr |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) /\ X =/= (/) ) -> ( W e. Word B /\ X e. Word B ) ) |
22 |
|
simpr |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> W =/= (/) ) |
23 |
22
|
anim1i |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) /\ X =/= (/) ) -> ( W =/= (/) /\ X =/= (/) ) ) |
24 |
1 2
|
gsumsgrpccat |
|- ( ( G e. Smgrp /\ ( W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( G gsum ( W ++ X ) ) = ( ( G gsum W ) .+ ( G gsum X ) ) ) |
25 |
19 21 23 24
|
syl3anc |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) /\ X =/= (/) ) -> ( G gsum ( W ++ X ) ) = ( ( G gsum W ) .+ ( G gsum X ) ) ) |
26 |
|
simpl2 |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> W e. Word B ) |
27 |
|
ccatrid |
|- ( W e. Word B -> ( W ++ (/) ) = W ) |
28 |
26 27
|
syl |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> ( W ++ (/) ) = W ) |
29 |
28
|
oveq2d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> ( G gsum ( W ++ (/) ) ) = ( G gsum W ) ) |
30 |
|
simpl1 |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> G e. Mnd ) |
31 |
1
|
gsumwcl |
|- ( ( G e. Mnd /\ W e. Word B ) -> ( G gsum W ) e. B ) |
32 |
31
|
3adant3 |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> ( G gsum W ) e. B ) |
33 |
32
|
adantr |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> ( G gsum W ) e. B ) |
34 |
1 2 6
|
mndrid |
|- ( ( G e. Mnd /\ ( G gsum W ) e. B ) -> ( ( G gsum W ) .+ ( 0g ` G ) ) = ( G gsum W ) ) |
35 |
30 33 34
|
syl2anc |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> ( ( G gsum W ) .+ ( 0g ` G ) ) = ( G gsum W ) ) |
36 |
29 35
|
eqtr4d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> ( G gsum ( W ++ (/) ) ) = ( ( G gsum W ) .+ ( 0g ` G ) ) ) |
37 |
16 25 36
|
pm2.61ne |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> ( G gsum ( W ++ X ) ) = ( ( G gsum W ) .+ ( G gsum X ) ) ) |
38 |
|
ccatlid |
|- ( X e. Word B -> ( (/) ++ X ) = X ) |
39 |
38
|
3ad2ant3 |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> ( (/) ++ X ) = X ) |
40 |
39
|
oveq2d |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> ( G gsum ( (/) ++ X ) ) = ( G gsum X ) ) |
41 |
|
simp1 |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> G e. Mnd ) |
42 |
1
|
gsumwcl |
|- ( ( G e. Mnd /\ X e. Word B ) -> ( G gsum X ) e. B ) |
43 |
1 2 6
|
mndlid |
|- ( ( G e. Mnd /\ ( G gsum X ) e. B ) -> ( ( 0g ` G ) .+ ( G gsum X ) ) = ( G gsum X ) ) |
44 |
41 42 43
|
3imp3i2an |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> ( ( 0g ` G ) .+ ( G gsum X ) ) = ( G gsum X ) ) |
45 |
40 44
|
eqtr4d |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> ( G gsum ( (/) ++ X ) ) = ( ( 0g ` G ) .+ ( G gsum X ) ) ) |
46 |
10 37 45
|
pm2.61ne |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> ( G gsum ( W ++ X ) ) = ( ( G gsum W ) .+ ( G gsum X ) ) ) |