Step |
Hyp |
Ref |
Expression |
1 |
|
gsumwcl.b |
|- B = ( Base ` G ) |
2 |
|
gsumsgrpccat.p |
|- .+ = ( +g ` G ) |
3 |
|
oveq1 |
|- ( W = (/) -> ( W ++ X ) = ( (/) ++ X ) ) |
4 |
3
|
oveq2d |
|- ( W = (/) -> ( G gsum ( W ++ X ) ) = ( G gsum ( (/) ++ X ) ) ) |
5 |
|
oveq2 |
|- ( W = (/) -> ( G gsum W ) = ( G gsum (/) ) ) |
6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
7 |
6
|
gsum0 |
|- ( G gsum (/) ) = ( 0g ` G ) |
8 |
5 7
|
eqtrdi |
|- ( W = (/) -> ( G gsum W ) = ( 0g ` G ) ) |
9 |
8
|
oveq1d |
|- ( W = (/) -> ( ( G gsum W ) .+ ( G gsum X ) ) = ( ( 0g ` G ) .+ ( G gsum X ) ) ) |
10 |
4 9
|
eqeq12d |
|- ( W = (/) -> ( ( G gsum ( W ++ X ) ) = ( ( G gsum W ) .+ ( G gsum X ) ) <-> ( G gsum ( (/) ++ X ) ) = ( ( 0g ` G ) .+ ( G gsum X ) ) ) ) |
11 |
|
oveq2 |
|- ( X = (/) -> ( W ++ X ) = ( W ++ (/) ) ) |
12 |
11
|
oveq2d |
|- ( X = (/) -> ( G gsum ( W ++ X ) ) = ( G gsum ( W ++ (/) ) ) ) |
13 |
|
oveq2 |
|- ( X = (/) -> ( G gsum X ) = ( G gsum (/) ) ) |
14 |
13 7
|
eqtrdi |
|- ( X = (/) -> ( G gsum X ) = ( 0g ` G ) ) |
15 |
14
|
oveq2d |
|- ( X = (/) -> ( ( G gsum W ) .+ ( G gsum X ) ) = ( ( G gsum W ) .+ ( 0g ` G ) ) ) |
16 |
12 15
|
eqeq12d |
|- ( X = (/) -> ( ( G gsum ( W ++ X ) ) = ( ( G gsum W ) .+ ( G gsum X ) ) <-> ( G gsum ( W ++ (/) ) ) = ( ( G gsum W ) .+ ( 0g ` G ) ) ) ) |
17 |
|
simpl1 |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> G e. Mnd ) |
18 |
|
lennncl |
|- ( ( W e. Word B /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
19 |
18
|
3ad2antl2 |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
20 |
19
|
adantrr |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` W ) e. NN ) |
21 |
|
lennncl |
|- ( ( X e. Word B /\ X =/= (/) ) -> ( # ` X ) e. NN ) |
22 |
21
|
3ad2antl3 |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ X =/= (/) ) -> ( # ` X ) e. NN ) |
23 |
22
|
adantrl |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` X ) e. NN ) |
24 |
20 23
|
nnaddcld |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` W ) + ( # ` X ) ) e. NN ) |
25 |
|
nnm1nn0 |
|- ( ( ( # ` W ) + ( # ` X ) ) e. NN -> ( ( ( # ` W ) + ( # ` X ) ) - 1 ) e. NN0 ) |
26 |
24 25
|
syl |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) + ( # ` X ) ) - 1 ) e. NN0 ) |
27 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
28 |
26 27
|
eleqtrdi |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) + ( # ` X ) ) - 1 ) e. ( ZZ>= ` 0 ) ) |
29 |
|
simpl2 |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> W e. Word B ) |
30 |
|
simpl3 |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> X e. Word B ) |
31 |
|
ccatcl |
|- ( ( W e. Word B /\ X e. Word B ) -> ( W ++ X ) e. Word B ) |
32 |
29 30 31
|
syl2anc |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( W ++ X ) e. Word B ) |
33 |
|
wrdf |
|- ( ( W ++ X ) e. Word B -> ( W ++ X ) : ( 0 ..^ ( # ` ( W ++ X ) ) ) --> B ) |
34 |
32 33
|
syl |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( W ++ X ) : ( 0 ..^ ( # ` ( W ++ X ) ) ) --> B ) |
35 |
|
ccatlen |
|- ( ( W e. Word B /\ X e. Word B ) -> ( # ` ( W ++ X ) ) = ( ( # ` W ) + ( # ` X ) ) ) |
36 |
29 30 35
|
syl2anc |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` ( W ++ X ) ) = ( ( # ` W ) + ( # ` X ) ) ) |
37 |
36
|
oveq2d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( 0 ..^ ( # ` ( W ++ X ) ) ) = ( 0 ..^ ( ( # ` W ) + ( # ` X ) ) ) ) |
38 |
20
|
nnzd |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` W ) e. ZZ ) |
39 |
23
|
nnzd |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` X ) e. ZZ ) |
40 |
38 39
|
zaddcld |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` W ) + ( # ` X ) ) e. ZZ ) |
41 |
|
fzoval |
|- ( ( ( # ` W ) + ( # ` X ) ) e. ZZ -> ( 0 ..^ ( ( # ` W ) + ( # ` X ) ) ) = ( 0 ... ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) |
42 |
40 41
|
syl |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( 0 ..^ ( ( # ` W ) + ( # ` X ) ) ) = ( 0 ... ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) |
43 |
37 42
|
eqtrd |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( 0 ..^ ( # ` ( W ++ X ) ) ) = ( 0 ... ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) |
44 |
43
|
feq2d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( W ++ X ) : ( 0 ..^ ( # ` ( W ++ X ) ) ) --> B <-> ( W ++ X ) : ( 0 ... ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) --> B ) ) |
45 |
34 44
|
mpbid |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( W ++ X ) : ( 0 ... ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) --> B ) |
46 |
1 2 17 28 45
|
gsumval2 |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( G gsum ( W ++ X ) ) = ( seq 0 ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) |
47 |
|
nnm1nn0 |
|- ( ( # ` W ) e. NN -> ( ( # ` W ) - 1 ) e. NN0 ) |
48 |
20 47
|
syl |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` W ) - 1 ) e. NN0 ) |
49 |
48 27
|
eleqtrdi |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` W ) - 1 ) e. ( ZZ>= ` 0 ) ) |
50 |
|
wrdf |
|- ( W e. Word B -> W : ( 0 ..^ ( # ` W ) ) --> B ) |
51 |
29 50
|
syl |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> W : ( 0 ..^ ( # ` W ) ) --> B ) |
52 |
|
fzoval |
|- ( ( # ` W ) e. ZZ -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
53 |
38 52
|
syl |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( 0 ..^ ( # ` W ) ) = ( 0 ... ( ( # ` W ) - 1 ) ) ) |
54 |
53
|
feq2d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( W : ( 0 ..^ ( # ` W ) ) --> B <-> W : ( 0 ... ( ( # ` W ) - 1 ) ) --> B ) ) |
55 |
51 54
|
mpbid |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> W : ( 0 ... ( ( # ` W ) - 1 ) ) --> B ) |
56 |
1 2 17 49 55
|
gsumval2 |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( G gsum W ) = ( seq 0 ( .+ , W ) ` ( ( # ` W ) - 1 ) ) ) |
57 |
|
nnm1nn0 |
|- ( ( # ` X ) e. NN -> ( ( # ` X ) - 1 ) e. NN0 ) |
58 |
23 57
|
syl |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` X ) - 1 ) e. NN0 ) |
59 |
58 27
|
eleqtrdi |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` X ) - 1 ) e. ( ZZ>= ` 0 ) ) |
60 |
|
wrdf |
|- ( X e. Word B -> X : ( 0 ..^ ( # ` X ) ) --> B ) |
61 |
30 60
|
syl |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> X : ( 0 ..^ ( # ` X ) ) --> B ) |
62 |
|
fzoval |
|- ( ( # ` X ) e. ZZ -> ( 0 ..^ ( # ` X ) ) = ( 0 ... ( ( # ` X ) - 1 ) ) ) |
63 |
39 62
|
syl |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( 0 ..^ ( # ` X ) ) = ( 0 ... ( ( # ` X ) - 1 ) ) ) |
64 |
63
|
feq2d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( X : ( 0 ..^ ( # ` X ) ) --> B <-> X : ( 0 ... ( ( # ` X ) - 1 ) ) --> B ) ) |
65 |
61 64
|
mpbid |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> X : ( 0 ... ( ( # ` X ) - 1 ) ) --> B ) |
66 |
1 2 17 59 65
|
gsumval2 |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( G gsum X ) = ( seq 0 ( .+ , X ) ` ( ( # ` X ) - 1 ) ) ) |
67 |
56 66
|
oveq12d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( G gsum W ) .+ ( G gsum X ) ) = ( ( seq 0 ( .+ , W ) ` ( ( # ` W ) - 1 ) ) .+ ( seq 0 ( .+ , X ) ` ( ( # ` X ) - 1 ) ) ) ) |
68 |
1 2
|
mndcl |
|- ( ( G e. Mnd /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
69 |
68
|
3expb |
|- ( ( G e. Mnd /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
70 |
17 69
|
sylan |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
71 |
1 2
|
mndass |
|- ( ( G e. Mnd /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
72 |
17 71
|
sylan |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
73 |
|
uzid |
|- ( ( # ` W ) e. ZZ -> ( # ` W ) e. ( ZZ>= ` ( # ` W ) ) ) |
74 |
38 73
|
syl |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` W ) e. ( ZZ>= ` ( # ` W ) ) ) |
75 |
|
uzaddcl |
|- ( ( ( # ` W ) e. ( ZZ>= ` ( # ` W ) ) /\ ( ( # ` X ) - 1 ) e. NN0 ) -> ( ( # ` W ) + ( ( # ` X ) - 1 ) ) e. ( ZZ>= ` ( # ` W ) ) ) |
76 |
74 58 75
|
syl2anc |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` W ) + ( ( # ` X ) - 1 ) ) e. ( ZZ>= ` ( # ` W ) ) ) |
77 |
20
|
nncnd |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` W ) e. CC ) |
78 |
23
|
nncnd |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( # ` X ) e. CC ) |
79 |
|
1cnd |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> 1 e. CC ) |
80 |
77 78 79
|
addsubassd |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) + ( # ` X ) ) - 1 ) = ( ( # ` W ) + ( ( # ` X ) - 1 ) ) ) |
81 |
|
ax-1cn |
|- 1 e. CC |
82 |
|
npcan |
|- ( ( ( # ` W ) e. CC /\ 1 e. CC ) -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) |
83 |
77 81 82
|
sylancl |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) - 1 ) + 1 ) = ( # ` W ) ) |
84 |
83
|
fveq2d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ZZ>= ` ( ( ( # ` W ) - 1 ) + 1 ) ) = ( ZZ>= ` ( # ` W ) ) ) |
85 |
76 80 84
|
3eltr4d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) + ( # ` X ) ) - 1 ) e. ( ZZ>= ` ( ( ( # ` W ) - 1 ) + 1 ) ) ) |
86 |
45
|
ffvelrnda |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) -> ( ( W ++ X ) ` x ) e. B ) |
87 |
70 72 85 49 86
|
seqsplit |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( seq 0 ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) = ( ( seq 0 ( .+ , ( W ++ X ) ) ` ( ( # ` W ) - 1 ) ) .+ ( seq ( ( ( # ` W ) - 1 ) + 1 ) ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) ) |
88 |
|
simpll2 |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) -> W e. Word B ) |
89 |
|
simpll3 |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) -> X e. Word B ) |
90 |
53
|
eleq2d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( x e. ( 0 ..^ ( # ` W ) ) <-> x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) ) |
91 |
90
|
biimpar |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) -> x e. ( 0 ..^ ( # ` W ) ) ) |
92 |
|
ccatval1 |
|- ( ( W e. Word B /\ X e. Word B /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W ++ X ) ` x ) = ( W ` x ) ) |
93 |
88 89 91 92
|
syl3anc |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` W ) - 1 ) ) ) -> ( ( W ++ X ) ` x ) = ( W ` x ) ) |
94 |
49 93
|
seqfveq |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( seq 0 ( .+ , ( W ++ X ) ) ` ( ( # ` W ) - 1 ) ) = ( seq 0 ( .+ , W ) ` ( ( # ` W ) - 1 ) ) ) |
95 |
77
|
addid2d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( 0 + ( # ` W ) ) = ( # ` W ) ) |
96 |
83 95
|
eqtr4d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) - 1 ) + 1 ) = ( 0 + ( # ` W ) ) ) |
97 |
96
|
seqeq1d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> seq ( ( ( # ` W ) - 1 ) + 1 ) ( .+ , ( W ++ X ) ) = seq ( 0 + ( # ` W ) ) ( .+ , ( W ++ X ) ) ) |
98 |
77 78
|
addcomd |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( # ` W ) + ( # ` X ) ) = ( ( # ` X ) + ( # ` W ) ) ) |
99 |
98
|
oveq1d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) + ( # ` X ) ) - 1 ) = ( ( ( # ` X ) + ( # ` W ) ) - 1 ) ) |
100 |
78 77 79
|
addsubd |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` X ) + ( # ` W ) ) - 1 ) = ( ( ( # ` X ) - 1 ) + ( # ` W ) ) ) |
101 |
99 100
|
eqtrd |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( ( # ` W ) + ( # ` X ) ) - 1 ) = ( ( ( # ` X ) - 1 ) + ( # ` W ) ) ) |
102 |
97 101
|
fveq12d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( seq ( ( ( # ` W ) - 1 ) + 1 ) ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) = ( seq ( 0 + ( # ` W ) ) ( .+ , ( W ++ X ) ) ` ( ( ( # ` X ) - 1 ) + ( # ` W ) ) ) ) |
103 |
|
simpll2 |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` X ) - 1 ) ) ) -> W e. Word B ) |
104 |
|
simpll3 |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` X ) - 1 ) ) ) -> X e. Word B ) |
105 |
63
|
eleq2d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( x e. ( 0 ..^ ( # ` X ) ) <-> x e. ( 0 ... ( ( # ` X ) - 1 ) ) ) ) |
106 |
105
|
biimpar |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` X ) - 1 ) ) ) -> x e. ( 0 ..^ ( # ` X ) ) ) |
107 |
|
ccatval3 |
|- ( ( W e. Word B /\ X e. Word B /\ x e. ( 0 ..^ ( # ` X ) ) ) -> ( ( W ++ X ) ` ( x + ( # ` W ) ) ) = ( X ` x ) ) |
108 |
103 104 106 107
|
syl3anc |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` X ) - 1 ) ) ) -> ( ( W ++ X ) ` ( x + ( # ` W ) ) ) = ( X ` x ) ) |
109 |
108
|
eqcomd |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) /\ x e. ( 0 ... ( ( # ` X ) - 1 ) ) ) -> ( X ` x ) = ( ( W ++ X ) ` ( x + ( # ` W ) ) ) ) |
110 |
59 38 109
|
seqshft2 |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( seq 0 ( .+ , X ) ` ( ( # ` X ) - 1 ) ) = ( seq ( 0 + ( # ` W ) ) ( .+ , ( W ++ X ) ) ` ( ( ( # ` X ) - 1 ) + ( # ` W ) ) ) ) |
111 |
102 110
|
eqtr4d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( seq ( ( ( # ` W ) - 1 ) + 1 ) ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) = ( seq 0 ( .+ , X ) ` ( ( # ` X ) - 1 ) ) ) |
112 |
94 111
|
oveq12d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( seq 0 ( .+ , ( W ++ X ) ) ` ( ( # ` W ) - 1 ) ) .+ ( seq ( ( ( # ` W ) - 1 ) + 1 ) ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) = ( ( seq 0 ( .+ , W ) ` ( ( # ` W ) - 1 ) ) .+ ( seq 0 ( .+ , X ) ` ( ( # ` X ) - 1 ) ) ) ) |
113 |
87 112
|
eqtrd |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( seq 0 ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) = ( ( seq 0 ( .+ , W ) ` ( ( # ` W ) - 1 ) ) .+ ( seq 0 ( .+ , X ) ` ( ( # ` X ) - 1 ) ) ) ) |
114 |
67 113
|
eqtr4d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( ( G gsum W ) .+ ( G gsum X ) ) = ( seq 0 ( .+ , ( W ++ X ) ) ` ( ( ( # ` W ) + ( # ` X ) ) - 1 ) ) ) |
115 |
46 114
|
eqtr4d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ ( W =/= (/) /\ X =/= (/) ) ) -> ( G gsum ( W ++ X ) ) = ( ( G gsum W ) .+ ( G gsum X ) ) ) |
116 |
115
|
anassrs |
|- ( ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) /\ X =/= (/) ) -> ( G gsum ( W ++ X ) ) = ( ( G gsum W ) .+ ( G gsum X ) ) ) |
117 |
|
simpl2 |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> W e. Word B ) |
118 |
|
ccatrid |
|- ( W e. Word B -> ( W ++ (/) ) = W ) |
119 |
117 118
|
syl |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> ( W ++ (/) ) = W ) |
120 |
119
|
oveq2d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> ( G gsum ( W ++ (/) ) ) = ( G gsum W ) ) |
121 |
|
simpl1 |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> G e. Mnd ) |
122 |
1
|
gsumwcl |
|- ( ( G e. Mnd /\ W e. Word B ) -> ( G gsum W ) e. B ) |
123 |
122
|
3adant3 |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> ( G gsum W ) e. B ) |
124 |
123
|
adantr |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> ( G gsum W ) e. B ) |
125 |
1 2 6
|
mndrid |
|- ( ( G e. Mnd /\ ( G gsum W ) e. B ) -> ( ( G gsum W ) .+ ( 0g ` G ) ) = ( G gsum W ) ) |
126 |
121 124 125
|
syl2anc |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> ( ( G gsum W ) .+ ( 0g ` G ) ) = ( G gsum W ) ) |
127 |
120 126
|
eqtr4d |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> ( G gsum ( W ++ (/) ) ) = ( ( G gsum W ) .+ ( 0g ` G ) ) ) |
128 |
16 116 127
|
pm2.61ne |
|- ( ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) /\ W =/= (/) ) -> ( G gsum ( W ++ X ) ) = ( ( G gsum W ) .+ ( G gsum X ) ) ) |
129 |
|
ccatlid |
|- ( X e. Word B -> ( (/) ++ X ) = X ) |
130 |
129
|
3ad2ant3 |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> ( (/) ++ X ) = X ) |
131 |
130
|
oveq2d |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> ( G gsum ( (/) ++ X ) ) = ( G gsum X ) ) |
132 |
|
simp1 |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> G e. Mnd ) |
133 |
1
|
gsumwcl |
|- ( ( G e. Mnd /\ X e. Word B ) -> ( G gsum X ) e. B ) |
134 |
1 2 6
|
mndlid |
|- ( ( G e. Mnd /\ ( G gsum X ) e. B ) -> ( ( 0g ` G ) .+ ( G gsum X ) ) = ( G gsum X ) ) |
135 |
132 133 134
|
3imp3i2an |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> ( ( 0g ` G ) .+ ( G gsum X ) ) = ( G gsum X ) ) |
136 |
131 135
|
eqtr4d |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> ( G gsum ( (/) ++ X ) ) = ( ( 0g ` G ) .+ ( G gsum X ) ) ) |
137 |
10 128 136
|
pm2.61ne |
|- ( ( G e. Mnd /\ W e. Word B /\ X e. Word B ) -> ( G gsum ( W ++ X ) ) = ( ( G gsum W ) .+ ( G gsum X ) ) ) |