Metamath Proof Explorer


Theorem gsumcl

Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumcl.b
|- B = ( Base ` G )
gsumcl.z
|- .0. = ( 0g ` G )
gsumcl.g
|- ( ph -> G e. CMnd )
gsumcl.a
|- ( ph -> A e. V )
gsumcl.f
|- ( ph -> F : A --> B )
gsumcl.w
|- ( ph -> F finSupp .0. )
Assertion gsumcl
|- ( ph -> ( G gsum F ) e. B )

Proof

Step Hyp Ref Expression
1 gsumcl.b
 |-  B = ( Base ` G )
2 gsumcl.z
 |-  .0. = ( 0g ` G )
3 gsumcl.g
 |-  ( ph -> G e. CMnd )
4 gsumcl.a
 |-  ( ph -> A e. V )
5 gsumcl.f
 |-  ( ph -> F : A --> B )
6 gsumcl.w
 |-  ( ph -> F finSupp .0. )
7 6 fsuppimpd
 |-  ( ph -> ( F supp .0. ) e. Fin )
8 1 2 3 4 5 7 gsumcl2
 |-  ( ph -> ( G gsum F ) e. B )