Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Group sum operation
gsumcl
Metamath Proof Explorer
Description: Closure of a finite group sum. (Contributed by Mario Carneiro , 15-Dec-2014) (Revised by Mario Carneiro , 24-Apr-2016) (Revised by AV , 3-Jun-2019)
Ref
Expression
Hypotheses
gsumcl.b
|- B = ( Base ` G )
gsumcl.z
|- .0. = ( 0g ` G )
gsumcl.g
|- ( ph -> G e. CMnd )
gsumcl.a
|- ( ph -> A e. V )
gsumcl.f
|- ( ph -> F : A --> B )
gsumcl.w
|- ( ph -> F finSupp .0. )
Assertion
gsumcl
|- ( ph -> ( G gsum F ) e. B )
Proof
Step
Hyp
Ref
Expression
1
gsumcl.b
|- B = ( Base ` G )
2
gsumcl.z
|- .0. = ( 0g ` G )
3
gsumcl.g
|- ( ph -> G e. CMnd )
4
gsumcl.a
|- ( ph -> A e. V )
5
gsumcl.f
|- ( ph -> F : A --> B )
6
gsumcl.w
|- ( ph -> F finSupp .0. )
7
6
fsuppimpd
|- ( ph -> ( F supp .0. ) e. Fin )
8
1 2 3 4 5 7
gsumcl2
|- ( ph -> ( G gsum F ) e. B )