Step |
Hyp |
Ref |
Expression |
1 |
|
gsumcom3.b |
|- B = ( Base ` G ) |
2 |
|
gsumcom3.z |
|- .0. = ( 0g ` G ) |
3 |
|
gsumcom3.g |
|- ( ph -> G e. CMnd ) |
4 |
|
gsumcom3.a |
|- ( ph -> A e. V ) |
5 |
|
gsumcom3.r |
|- ( ph -> C e. W ) |
6 |
|
gsumcom3.f |
|- ( ( ph /\ ( j e. A /\ k e. C ) ) -> X e. B ) |
7 |
|
gsumcom3.u |
|- ( ph -> U e. Fin ) |
8 |
|
gsumcom3.n |
|- ( ( ph /\ ( ( j e. A /\ k e. C ) /\ -. j U k ) ) -> X = .0. ) |
9 |
1 2 3 4 5 6 7 8
|
gsumcom |
|- ( ph -> ( G gsum ( j e. A , k e. C |-> X ) ) = ( G gsum ( k e. C , j e. A |-> X ) ) ) |
10 |
5
|
adantr |
|- ( ( ph /\ j e. A ) -> C e. W ) |
11 |
1 2 3 4 10 6 7 8
|
gsum2d2 |
|- ( ph -> ( G gsum ( j e. A , k e. C |-> X ) ) = ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> X ) ) ) ) ) |
12 |
4
|
adantr |
|- ( ( ph /\ k e. C ) -> A e. V ) |
13 |
6
|
ancom2s |
|- ( ( ph /\ ( k e. C /\ j e. A ) ) -> X e. B ) |
14 |
|
cnvfi |
|- ( U e. Fin -> `' U e. Fin ) |
15 |
7 14
|
syl |
|- ( ph -> `' U e. Fin ) |
16 |
|
ancom |
|- ( ( k e. C /\ j e. A ) <-> ( j e. A /\ k e. C ) ) |
17 |
|
vex |
|- k e. _V |
18 |
|
vex |
|- j e. _V |
19 |
17 18
|
brcnv |
|- ( k `' U j <-> j U k ) |
20 |
19
|
notbii |
|- ( -. k `' U j <-> -. j U k ) |
21 |
16 20
|
anbi12i |
|- ( ( ( k e. C /\ j e. A ) /\ -. k `' U j ) <-> ( ( j e. A /\ k e. C ) /\ -. j U k ) ) |
22 |
21 8
|
sylan2b |
|- ( ( ph /\ ( ( k e. C /\ j e. A ) /\ -. k `' U j ) ) -> X = .0. ) |
23 |
1 2 3 5 12 13 15 22
|
gsum2d2 |
|- ( ph -> ( G gsum ( k e. C , j e. A |-> X ) ) = ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> X ) ) ) ) ) |
24 |
9 11 23
|
3eqtr3d |
|- ( ph -> ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> X ) ) ) ) = ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> X ) ) ) ) ) |