| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumcom3fi.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsumcom3fi.g |  |-  ( ph -> G e. CMnd ) | 
						
							| 3 |  | gsumcom3fi.a |  |-  ( ph -> A e. Fin ) | 
						
							| 4 |  | gsumcom3fi.r |  |-  ( ph -> C e. Fin ) | 
						
							| 5 |  | gsumcom3fi.f |  |-  ( ( ph /\ ( j e. A /\ k e. C ) ) -> X e. B ) | 
						
							| 6 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 7 |  | xpfi |  |-  ( ( A e. Fin /\ C e. Fin ) -> ( A X. C ) e. Fin ) | 
						
							| 8 | 3 4 7 | syl2anc |  |-  ( ph -> ( A X. C ) e. Fin ) | 
						
							| 9 |  | brxp |  |-  ( j ( A X. C ) k <-> ( j e. A /\ k e. C ) ) | 
						
							| 10 | 9 | biimpri |  |-  ( ( j e. A /\ k e. C ) -> j ( A X. C ) k ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ph /\ ( j e. A /\ k e. C ) ) -> j ( A X. C ) k ) | 
						
							| 12 | 11 | pm2.24d |  |-  ( ( ph /\ ( j e. A /\ k e. C ) ) -> ( -. j ( A X. C ) k -> X = ( 0g ` G ) ) ) | 
						
							| 13 | 12 | impr |  |-  ( ( ph /\ ( ( j e. A /\ k e. C ) /\ -. j ( A X. C ) k ) ) -> X = ( 0g ` G ) ) | 
						
							| 14 | 1 6 2 3 4 5 8 13 | gsumcom3 |  |-  ( ph -> ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> X ) ) ) ) = ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> X ) ) ) ) ) |