Step |
Hyp |
Ref |
Expression |
1 |
|
gsumcom3fi.b |
|- B = ( Base ` G ) |
2 |
|
gsumcom3fi.g |
|- ( ph -> G e. CMnd ) |
3 |
|
gsumcom3fi.a |
|- ( ph -> A e. Fin ) |
4 |
|
gsumcom3fi.r |
|- ( ph -> C e. Fin ) |
5 |
|
gsumcom3fi.f |
|- ( ( ph /\ ( j e. A /\ k e. C ) ) -> X e. B ) |
6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
7 |
|
xpfi |
|- ( ( A e. Fin /\ C e. Fin ) -> ( A X. C ) e. Fin ) |
8 |
3 4 7
|
syl2anc |
|- ( ph -> ( A X. C ) e. Fin ) |
9 |
|
brxp |
|- ( j ( A X. C ) k <-> ( j e. A /\ k e. C ) ) |
10 |
9
|
biimpri |
|- ( ( j e. A /\ k e. C ) -> j ( A X. C ) k ) |
11 |
10
|
adantl |
|- ( ( ph /\ ( j e. A /\ k e. C ) ) -> j ( A X. C ) k ) |
12 |
11
|
pm2.24d |
|- ( ( ph /\ ( j e. A /\ k e. C ) ) -> ( -. j ( A X. C ) k -> X = ( 0g ` G ) ) ) |
13 |
12
|
impr |
|- ( ( ph /\ ( ( j e. A /\ k e. C ) /\ -. j ( A X. C ) k ) ) -> X = ( 0g ` G ) ) |
14 |
1 6 2 3 4 5 8 13
|
gsumcom3 |
|- ( ph -> ( G gsum ( j e. A |-> ( G gsum ( k e. C |-> X ) ) ) ) = ( G gsum ( k e. C |-> ( G gsum ( j e. A |-> X ) ) ) ) ) |