Metamath Proof Explorer


Theorem gsumconstf

Description: Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017)

Ref Expression
Hypotheses gsumconstf.k
|- F/_ k X
gsumconstf.b
|- B = ( Base ` G )
gsumconstf.m
|- .x. = ( .g ` G )
Assertion gsumconstf
|- ( ( G e. Mnd /\ A e. Fin /\ X e. B ) -> ( G gsum ( k e. A |-> X ) ) = ( ( # ` A ) .x. X ) )

Proof

Step Hyp Ref Expression
1 gsumconstf.k
 |-  F/_ k X
2 gsumconstf.b
 |-  B = ( Base ` G )
3 gsumconstf.m
 |-  .x. = ( .g ` G )
4 nfcv
 |-  F/_ l X
5 eqidd
 |-  ( k = l -> X = X )
6 4 1 5 cbvmpt
 |-  ( k e. A |-> X ) = ( l e. A |-> X )
7 6 oveq2i
 |-  ( G gsum ( k e. A |-> X ) ) = ( G gsum ( l e. A |-> X ) )
8 2 3 gsumconst
 |-  ( ( G e. Mnd /\ A e. Fin /\ X e. B ) -> ( G gsum ( l e. A |-> X ) ) = ( ( # ` A ) .x. X ) )
9 7 8 syl5eq
 |-  ( ( G e. Mnd /\ A e. Fin /\ X e. B ) -> ( G gsum ( k e. A |-> X ) ) = ( ( # ` A ) .x. X ) )