Description: Sum of a constant series. (Contributed by Thierry Arnoux, 5-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsumconstf.k | |- F/_ k X |
|
gsumconstf.b | |- B = ( Base ` G ) |
||
gsumconstf.m | |- .x. = ( .g ` G ) |
||
Assertion | gsumconstf | |- ( ( G e. Mnd /\ A e. Fin /\ X e. B ) -> ( G gsum ( k e. A |-> X ) ) = ( ( # ` A ) .x. X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumconstf.k | |- F/_ k X |
|
2 | gsumconstf.b | |- B = ( Base ` G ) |
|
3 | gsumconstf.m | |- .x. = ( .g ` G ) |
|
4 | nfcv | |- F/_ l X |
|
5 | eqidd | |- ( k = l -> X = X ) |
|
6 | 4 1 5 | cbvmpt | |- ( k e. A |-> X ) = ( l e. A |-> X ) |
7 | 6 | oveq2i | |- ( G gsum ( k e. A |-> X ) ) = ( G gsum ( l e. A |-> X ) ) |
8 | 2 3 | gsumconst | |- ( ( G e. Mnd /\ A e. Fin /\ X e. B ) -> ( G gsum ( l e. A |-> X ) ) = ( ( # ` A ) .x. X ) ) |
9 | 7 8 | eqtrid | |- ( ( G e. Mnd /\ A e. Fin /\ X e. B ) -> ( G gsum ( k e. A |-> X ) ) = ( ( # ` A ) .x. X ) ) |