| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumfsum.1 |  |-  ( ph -> A e. Fin ) | 
						
							| 2 |  | gsumfsum.2 |  |-  ( ( ph /\ k e. A ) -> B e. CC ) | 
						
							| 3 |  | mpteq1 |  |-  ( A = (/) -> ( k e. A |-> B ) = ( k e. (/) |-> B ) ) | 
						
							| 4 |  | mpt0 |  |-  ( k e. (/) |-> B ) = (/) | 
						
							| 5 | 3 4 | eqtrdi |  |-  ( A = (/) -> ( k e. A |-> B ) = (/) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( A = (/) -> ( CCfld gsum ( k e. A |-> B ) ) = ( CCfld gsum (/) ) ) | 
						
							| 7 |  | cnfld0 |  |-  0 = ( 0g ` CCfld ) | 
						
							| 8 | 7 | gsum0 |  |-  ( CCfld gsum (/) ) = 0 | 
						
							| 9 |  | sum0 |  |-  sum_ k e. (/) B = 0 | 
						
							| 10 | 8 9 | eqtr4i |  |-  ( CCfld gsum (/) ) = sum_ k e. (/) B | 
						
							| 11 | 6 10 | eqtrdi |  |-  ( A = (/) -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. (/) B ) | 
						
							| 12 |  | sumeq1 |  |-  ( A = (/) -> sum_ k e. A B = sum_ k e. (/) B ) | 
						
							| 13 | 11 12 | eqtr4d |  |-  ( A = (/) -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) | 
						
							| 14 | 13 | a1i |  |-  ( ph -> ( A = (/) -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) ) | 
						
							| 15 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 16 |  | cnfldadd |  |-  + = ( +g ` CCfld ) | 
						
							| 17 |  | eqid |  |-  ( Cntz ` CCfld ) = ( Cntz ` CCfld ) | 
						
							| 18 |  | cnring |  |-  CCfld e. Ring | 
						
							| 19 |  | ringmnd |  |-  ( CCfld e. Ring -> CCfld e. Mnd ) | 
						
							| 20 | 18 19 | mp1i |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> CCfld e. Mnd ) | 
						
							| 21 | 1 | adantr |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> A e. Fin ) | 
						
							| 22 | 2 | fmpttd |  |-  ( ph -> ( k e. A |-> B ) : A --> CC ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( k e. A |-> B ) : A --> CC ) | 
						
							| 24 |  | ringcmn |  |-  ( CCfld e. Ring -> CCfld e. CMnd ) | 
						
							| 25 | 18 24 | mp1i |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> CCfld e. CMnd ) | 
						
							| 26 | 15 17 25 23 | cntzcmnf |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ran ( k e. A |-> B ) C_ ( ( Cntz ` CCfld ) ` ran ( k e. A |-> B ) ) ) | 
						
							| 27 |  | simprl |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( # ` A ) e. NN ) | 
						
							| 28 |  | simprr |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) | 
						
							| 29 |  | f1of1 |  |-  ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) -1-1-> A ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) -1-1-> A ) | 
						
							| 31 |  | suppssdm |  |-  ( ( k e. A |-> B ) supp 0 ) C_ dom ( k e. A |-> B ) | 
						
							| 32 | 31 23 | fssdm |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( ( k e. A |-> B ) supp 0 ) C_ A ) | 
						
							| 33 |  | f1ofo |  |-  ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) -onto-> A ) | 
						
							| 34 |  | forn |  |-  ( f : ( 1 ... ( # ` A ) ) -onto-> A -> ran f = A ) | 
						
							| 35 | 28 33 34 | 3syl |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ran f = A ) | 
						
							| 36 | 32 35 | sseqtrrd |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( ( k e. A |-> B ) supp 0 ) C_ ran f ) | 
						
							| 37 |  | eqid |  |-  ( ( ( k e. A |-> B ) o. f ) supp 0 ) = ( ( ( k e. A |-> B ) o. f ) supp 0 ) | 
						
							| 38 | 15 7 16 17 20 21 23 26 27 30 36 37 | gsumval3 |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( CCfld gsum ( k e. A |-> B ) ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) | 
						
							| 39 |  | sumfc |  |-  sum_ x e. A ( ( k e. A |-> B ) ` x ) = sum_ k e. A B | 
						
							| 40 |  | fveq2 |  |-  ( x = ( f ` n ) -> ( ( k e. A |-> B ) ` x ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) | 
						
							| 41 | 23 | ffvelcdmda |  |-  ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ x e. A ) -> ( ( k e. A |-> B ) ` x ) e. CC ) | 
						
							| 42 |  | f1of |  |-  ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> f : ( 1 ... ( # ` A ) ) --> A ) | 
						
							| 43 | 28 42 | syl |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> f : ( 1 ... ( # ` A ) ) --> A ) | 
						
							| 44 |  | fvco3 |  |-  ( ( f : ( 1 ... ( # ` A ) ) --> A /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) | 
						
							| 45 | 43 44 | sylan |  |-  ( ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) /\ n e. ( 1 ... ( # ` A ) ) ) -> ( ( ( k e. A |-> B ) o. f ) ` n ) = ( ( k e. A |-> B ) ` ( f ` n ) ) ) | 
						
							| 46 | 40 27 28 41 45 | fsum |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ x e. A ( ( k e. A |-> B ) ` x ) = ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) | 
						
							| 47 | 39 46 | eqtr3id |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> sum_ k e. A B = ( seq 1 ( + , ( ( k e. A |-> B ) o. f ) ) ` ( # ` A ) ) ) | 
						
							| 48 | 38 47 | eqtr4d |  |-  ( ( ph /\ ( ( # ` A ) e. NN /\ f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) | 
						
							| 49 | 48 | expr |  |-  ( ( ph /\ ( # ` A ) e. NN ) -> ( f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) ) | 
						
							| 50 | 49 | exlimdv |  |-  ( ( ph /\ ( # ` A ) e. NN ) -> ( E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) ) | 
						
							| 51 | 50 | expimpd |  |-  ( ph -> ( ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) ) | 
						
							| 52 |  | fz1f1o |  |-  ( A e. Fin -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) | 
						
							| 53 | 1 52 | syl |  |-  ( ph -> ( A = (/) \/ ( ( # ` A ) e. NN /\ E. f f : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) ) ) | 
						
							| 54 | 14 51 53 | mpjaod |  |-  ( ph -> ( CCfld gsum ( k e. A |-> B ) ) = sum_ k e. A B ) |