| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsuminv.b |
|- B = ( Base ` G ) |
| 2 |
|
gsuminv.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsuminv.p |
|- I = ( invg ` G ) |
| 4 |
|
gsuminv.g |
|- ( ph -> G e. Abel ) |
| 5 |
|
gsuminv.a |
|- ( ph -> A e. V ) |
| 6 |
|
gsuminv.f |
|- ( ph -> F : A --> B ) |
| 7 |
|
gsuminv.n |
|- ( ph -> F finSupp .0. ) |
| 8 |
|
ablcmn |
|- ( G e. Abel -> G e. CMnd ) |
| 9 |
4 8
|
syl |
|- ( ph -> G e. CMnd ) |
| 10 |
|
cmnmnd |
|- ( G e. CMnd -> G e. Mnd ) |
| 11 |
9 10
|
syl |
|- ( ph -> G e. Mnd ) |
| 12 |
1 3
|
invghm |
|- ( G e. Abel <-> I e. ( G GrpHom G ) ) |
| 13 |
4 12
|
sylib |
|- ( ph -> I e. ( G GrpHom G ) ) |
| 14 |
|
ghmmhm |
|- ( I e. ( G GrpHom G ) -> I e. ( G MndHom G ) ) |
| 15 |
13 14
|
syl |
|- ( ph -> I e. ( G MndHom G ) ) |
| 16 |
1 2 9 11 5 15 6 7
|
gsummhm |
|- ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) ) |