Metamath Proof Explorer


Theorem gsuminv

Description: Inverse of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 4-May-2015) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsuminv.b
|- B = ( Base ` G )
gsuminv.z
|- .0. = ( 0g ` G )
gsuminv.p
|- I = ( invg ` G )
gsuminv.g
|- ( ph -> G e. Abel )
gsuminv.a
|- ( ph -> A e. V )
gsuminv.f
|- ( ph -> F : A --> B )
gsuminv.n
|- ( ph -> F finSupp .0. )
Assertion gsuminv
|- ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) )

Proof

Step Hyp Ref Expression
1 gsuminv.b
 |-  B = ( Base ` G )
2 gsuminv.z
 |-  .0. = ( 0g ` G )
3 gsuminv.p
 |-  I = ( invg ` G )
4 gsuminv.g
 |-  ( ph -> G e. Abel )
5 gsuminv.a
 |-  ( ph -> A e. V )
6 gsuminv.f
 |-  ( ph -> F : A --> B )
7 gsuminv.n
 |-  ( ph -> F finSupp .0. )
8 ablcmn
 |-  ( G e. Abel -> G e. CMnd )
9 4 8 syl
 |-  ( ph -> G e. CMnd )
10 cmnmnd
 |-  ( G e. CMnd -> G e. Mnd )
11 9 10 syl
 |-  ( ph -> G e. Mnd )
12 1 3 invghm
 |-  ( G e. Abel <-> I e. ( G GrpHom G ) )
13 4 12 sylib
 |-  ( ph -> I e. ( G GrpHom G ) )
14 ghmmhm
 |-  ( I e. ( G GrpHom G ) -> I e. ( G MndHom G ) )
15 13 14 syl
 |-  ( ph -> I e. ( G MndHom G ) )
16 1 2 9 11 5 15 6 7 gsummhm
 |-  ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) )