Description: Inverse of a group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 4-May-2015) (Revised by AV, 6-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsuminv.b | |- B = ( Base ` G ) |
|
gsuminv.z | |- .0. = ( 0g ` G ) |
||
gsuminv.p | |- I = ( invg ` G ) |
||
gsuminv.g | |- ( ph -> G e. Abel ) |
||
gsuminv.a | |- ( ph -> A e. V ) |
||
gsuminv.f | |- ( ph -> F : A --> B ) |
||
gsuminv.n | |- ( ph -> F finSupp .0. ) |
||
Assertion | gsuminv | |- ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsuminv.b | |- B = ( Base ` G ) |
|
2 | gsuminv.z | |- .0. = ( 0g ` G ) |
|
3 | gsuminv.p | |- I = ( invg ` G ) |
|
4 | gsuminv.g | |- ( ph -> G e. Abel ) |
|
5 | gsuminv.a | |- ( ph -> A e. V ) |
|
6 | gsuminv.f | |- ( ph -> F : A --> B ) |
|
7 | gsuminv.n | |- ( ph -> F finSupp .0. ) |
|
8 | ablcmn | |- ( G e. Abel -> G e. CMnd ) |
|
9 | 4 8 | syl | |- ( ph -> G e. CMnd ) |
10 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
11 | 9 10 | syl | |- ( ph -> G e. Mnd ) |
12 | 1 3 | invghm | |- ( G e. Abel <-> I e. ( G GrpHom G ) ) |
13 | 4 12 | sylib | |- ( ph -> I e. ( G GrpHom G ) ) |
14 | ghmmhm | |- ( I e. ( G GrpHom G ) -> I e. ( G MndHom G ) ) |
|
15 | 13 14 | syl | |- ( ph -> I e. ( G MndHom G ) ) |
16 | 1 2 9 11 5 15 6 7 | gsummhm | |- ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) ) |