| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummgp0.g |  |-  G = ( mulGrp ` R ) | 
						
							| 2 |  | gsummgp0.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | gsummgp0.r |  |-  ( ph -> R e. CRing ) | 
						
							| 4 |  | gsummgp0.n |  |-  ( ph -> N e. Fin ) | 
						
							| 5 |  | gsummgp0.a |  |-  ( ( ph /\ n e. N ) -> A e. ( Base ` R ) ) | 
						
							| 6 |  | gsummgp0.e |  |-  ( ( ph /\ n = i ) -> A = B ) | 
						
							| 7 |  | gsummgp0.b |  |-  ( ph -> E. i e. N B = .0. ) | 
						
							| 8 |  | difsnid |  |-  ( i e. N -> ( ( N \ { i } ) u. { i } ) = N ) | 
						
							| 9 | 8 | eqcomd |  |-  ( i e. N -> N = ( ( N \ { i } ) u. { i } ) ) | 
						
							| 10 | 9 | ad2antrl |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> N = ( ( N \ { i } ) u. { i } ) ) | 
						
							| 11 | 10 | mpteq1d |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( n e. N |-> A ) = ( n e. ( ( N \ { i } ) u. { i } ) |-> A ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( G gsum ( n e. N |-> A ) ) = ( G gsum ( n e. ( ( N \ { i } ) u. { i } ) |-> A ) ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 14 | 1 13 | mgpbas |  |-  ( Base ` R ) = ( Base ` G ) | 
						
							| 15 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 16 | 1 15 | mgpplusg |  |-  ( .r ` R ) = ( +g ` G ) | 
						
							| 17 | 1 | crngmgp |  |-  ( R e. CRing -> G e. CMnd ) | 
						
							| 18 | 3 17 | syl |  |-  ( ph -> G e. CMnd ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> G e. CMnd ) | 
						
							| 20 |  | diffi |  |-  ( N e. Fin -> ( N \ { i } ) e. Fin ) | 
						
							| 21 | 4 20 | syl |  |-  ( ph -> ( N \ { i } ) e. Fin ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( N \ { i } ) e. Fin ) | 
						
							| 23 |  | simpl |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ph ) | 
						
							| 24 |  | eldifi |  |-  ( n e. ( N \ { i } ) -> n e. N ) | 
						
							| 25 | 23 24 5 | syl2an |  |-  ( ( ( ph /\ ( i e. N /\ B = .0. ) ) /\ n e. ( N \ { i } ) ) -> A e. ( Base ` R ) ) | 
						
							| 26 |  | simprl |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> i e. N ) | 
						
							| 27 |  | neldifsnd |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> -. i e. ( N \ { i } ) ) | 
						
							| 28 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 29 | 3 28 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 30 |  | ringmnd |  |-  ( R e. Ring -> R e. Mnd ) | 
						
							| 31 | 13 2 | mndidcl |  |-  ( R e. Mnd -> .0. e. ( Base ` R ) ) | 
						
							| 32 | 29 30 31 | 3syl |  |-  ( ph -> .0. e. ( Base ` R ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> .0. e. ( Base ` R ) ) | 
						
							| 34 |  | eleq1 |  |-  ( B = .0. -> ( B e. ( Base ` R ) <-> .0. e. ( Base ` R ) ) ) | 
						
							| 35 | 34 | ad2antll |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( B e. ( Base ` R ) <-> .0. e. ( Base ` R ) ) ) | 
						
							| 36 | 33 35 | mpbird |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> B e. ( Base ` R ) ) | 
						
							| 37 | 6 | adantlr |  |-  ( ( ( ph /\ ( i e. N /\ B = .0. ) ) /\ n = i ) -> A = B ) | 
						
							| 38 | 14 16 19 22 25 26 27 36 37 | gsumunsnd |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( G gsum ( n e. ( ( N \ { i } ) u. { i } ) |-> A ) ) = ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) B ) ) | 
						
							| 39 |  | oveq2 |  |-  ( B = .0. -> ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) B ) = ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) .0. ) ) | 
						
							| 40 | 39 | ad2antll |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) B ) = ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) .0. ) ) | 
						
							| 41 | 24 5 | sylan2 |  |-  ( ( ph /\ n e. ( N \ { i } ) ) -> A e. ( Base ` R ) ) | 
						
							| 42 | 41 | ralrimiva |  |-  ( ph -> A. n e. ( N \ { i } ) A e. ( Base ` R ) ) | 
						
							| 43 | 14 18 21 42 | gsummptcl |  |-  ( ph -> ( G gsum ( n e. ( N \ { i } ) |-> A ) ) e. ( Base ` R ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( G gsum ( n e. ( N \ { i } ) |-> A ) ) e. ( Base ` R ) ) | 
						
							| 45 | 13 15 2 | ringrz |  |-  ( ( R e. Ring /\ ( G gsum ( n e. ( N \ { i } ) |-> A ) ) e. ( Base ` R ) ) -> ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) .0. ) = .0. ) | 
						
							| 46 | 29 44 45 | syl2an2r |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) .0. ) = .0. ) | 
						
							| 47 | 40 46 | eqtrd |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( ( G gsum ( n e. ( N \ { i } ) |-> A ) ) ( .r ` R ) B ) = .0. ) | 
						
							| 48 | 12 38 47 | 3eqtrd |  |-  ( ( ph /\ ( i e. N /\ B = .0. ) ) -> ( G gsum ( n e. N |-> A ) ) = .0. ) | 
						
							| 49 | 7 48 | rexlimddv |  |-  ( ph -> ( G gsum ( n e. N |-> A ) ) = .0. ) |