Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 6-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummhm.b | |- B = ( Base ` G ) | |
| gsummhm.z | |- .0. = ( 0g ` G ) | ||
| gsummhm.g | |- ( ph -> G e. CMnd ) | ||
| gsummhm.h | |- ( ph -> H e. Mnd ) | ||
| gsummhm.a | |- ( ph -> A e. V ) | ||
| gsummhm.k | |- ( ph -> K e. ( G MndHom H ) ) | ||
| gsummhm.f | |- ( ph -> F : A --> B ) | ||
| gsummhm.w | |- ( ph -> F finSupp .0. ) | ||
| Assertion | gsummhm | |- ( ph -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gsummhm.b | |- B = ( Base ` G ) | |
| 2 | gsummhm.z | |- .0. = ( 0g ` G ) | |
| 3 | gsummhm.g | |- ( ph -> G e. CMnd ) | |
| 4 | gsummhm.h | |- ( ph -> H e. Mnd ) | |
| 5 | gsummhm.a | |- ( ph -> A e. V ) | |
| 6 | gsummhm.k | |- ( ph -> K e. ( G MndHom H ) ) | |
| 7 | gsummhm.f | |- ( ph -> F : A --> B ) | |
| 8 | gsummhm.w | |- ( ph -> F finSupp .0. ) | |
| 9 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) | |
| 10 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) | |
| 11 | 3 10 | syl | |- ( ph -> G e. Mnd ) | 
| 12 | 1 9 3 7 | cntzcmnf | |- ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) | 
| 13 | 1 9 11 4 5 6 7 12 2 8 | gsumzmhm | |- ( ph -> ( H gsum ( K o. F ) ) = ( K ` ( G gsum F ) ) ) |