| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummhm2.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsummhm2.z |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | gsummhm2.g |  |-  ( ph -> G e. CMnd ) | 
						
							| 4 |  | gsummhm2.h |  |-  ( ph -> H e. Mnd ) | 
						
							| 5 |  | gsummhm2.a |  |-  ( ph -> A e. V ) | 
						
							| 6 |  | gsummhm2.k |  |-  ( ph -> ( x e. B |-> C ) e. ( G MndHom H ) ) | 
						
							| 7 |  | gsummhm2.f |  |-  ( ( ph /\ k e. A ) -> X e. B ) | 
						
							| 8 |  | gsummhm2.w |  |-  ( ph -> ( k e. A |-> X ) finSupp .0. ) | 
						
							| 9 |  | gsummhm2.1 |  |-  ( x = X -> C = D ) | 
						
							| 10 |  | gsummhm2.2 |  |-  ( x = ( G gsum ( k e. A |-> X ) ) -> C = E ) | 
						
							| 11 | 7 | fmpttd |  |-  ( ph -> ( k e. A |-> X ) : A --> B ) | 
						
							| 12 | 1 2 3 4 5 6 11 8 | gsummhm |  |-  ( ph -> ( H gsum ( ( x e. B |-> C ) o. ( k e. A |-> X ) ) ) = ( ( x e. B |-> C ) ` ( G gsum ( k e. A |-> X ) ) ) ) | 
						
							| 13 |  | eqidd |  |-  ( ph -> ( k e. A |-> X ) = ( k e. A |-> X ) ) | 
						
							| 14 |  | eqidd |  |-  ( ph -> ( x e. B |-> C ) = ( x e. B |-> C ) ) | 
						
							| 15 | 7 13 14 9 | fmptco |  |-  ( ph -> ( ( x e. B |-> C ) o. ( k e. A |-> X ) ) = ( k e. A |-> D ) ) | 
						
							| 16 | 15 | oveq2d |  |-  ( ph -> ( H gsum ( ( x e. B |-> C ) o. ( k e. A |-> X ) ) ) = ( H gsum ( k e. A |-> D ) ) ) | 
						
							| 17 |  | eqid |  |-  ( x e. B |-> C ) = ( x e. B |-> C ) | 
						
							| 18 | 1 2 3 5 11 8 | gsumcl |  |-  ( ph -> ( G gsum ( k e. A |-> X ) ) e. B ) | 
						
							| 19 | 10 | eleq1d |  |-  ( x = ( G gsum ( k e. A |-> X ) ) -> ( C e. ( Base ` H ) <-> E e. ( Base ` H ) ) ) | 
						
							| 20 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 21 | 1 20 | mhmf |  |-  ( ( x e. B |-> C ) e. ( G MndHom H ) -> ( x e. B |-> C ) : B --> ( Base ` H ) ) | 
						
							| 22 | 6 21 | syl |  |-  ( ph -> ( x e. B |-> C ) : B --> ( Base ` H ) ) | 
						
							| 23 | 17 | fmpt |  |-  ( A. x e. B C e. ( Base ` H ) <-> ( x e. B |-> C ) : B --> ( Base ` H ) ) | 
						
							| 24 | 22 23 | sylibr |  |-  ( ph -> A. x e. B C e. ( Base ` H ) ) | 
						
							| 25 | 19 24 18 | rspcdva |  |-  ( ph -> E e. ( Base ` H ) ) | 
						
							| 26 | 17 10 18 25 | fvmptd3 |  |-  ( ph -> ( ( x e. B |-> C ) ` ( G gsum ( k e. A |-> X ) ) ) = E ) | 
						
							| 27 | 12 16 26 | 3eqtr3d |  |-  ( ph -> ( H gsum ( k e. A |-> D ) ) = E ) |