Step |
Hyp |
Ref |
Expression |
1 |
|
gsummonply1.p |
|- P = ( Poly1 ` R ) |
2 |
|
gsummonply1.b |
|- B = ( Base ` P ) |
3 |
|
gsummonply1.x |
|- X = ( var1 ` R ) |
4 |
|
gsummonply1.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
5 |
|
gsummonply1.r |
|- ( ph -> R e. Ring ) |
6 |
|
gsummonply1.k |
|- K = ( Base ` R ) |
7 |
|
gsummonply1.m |
|- .* = ( .s ` P ) |
8 |
|
gsummonply1.0 |
|- .0. = ( 0g ` R ) |
9 |
|
gsummonply1.a |
|- ( ph -> A. k e. NN0 A e. K ) |
10 |
|
gsummonply1.f |
|- ( ph -> ( k e. NN0 |-> A ) finSupp .0. ) |
11 |
|
gsummonply1.l |
|- ( ph -> L e. NN0 ) |
12 |
9
|
r19.21bi |
|- ( ( ph /\ k e. NN0 ) -> A e. K ) |
13 |
12
|
fmpttd |
|- ( ph -> ( k e. NN0 |-> A ) : NN0 --> K ) |
14 |
6
|
fvexi |
|- K e. _V |
15 |
14
|
a1i |
|- ( ph -> K e. _V ) |
16 |
|
nn0ex |
|- NN0 e. _V |
17 |
|
elmapg |
|- ( ( K e. _V /\ NN0 e. _V ) -> ( ( k e. NN0 |-> A ) e. ( K ^m NN0 ) <-> ( k e. NN0 |-> A ) : NN0 --> K ) ) |
18 |
15 16 17
|
sylancl |
|- ( ph -> ( ( k e. NN0 |-> A ) e. ( K ^m NN0 ) <-> ( k e. NN0 |-> A ) : NN0 --> K ) ) |
19 |
13 18
|
mpbird |
|- ( ph -> ( k e. NN0 |-> A ) e. ( K ^m NN0 ) ) |
20 |
8
|
fvexi |
|- .0. e. _V |
21 |
|
fsuppmapnn0ub |
|- ( ( ( k e. NN0 |-> A ) e. ( K ^m NN0 ) /\ .0. e. _V ) -> ( ( k e. NN0 |-> A ) finSupp .0. -> E. s e. NN0 A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) ) ) |
22 |
19 20 21
|
sylancl |
|- ( ph -> ( ( k e. NN0 |-> A ) finSupp .0. -> E. s e. NN0 A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) ) ) |
23 |
10 22
|
mpd |
|- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) ) |
24 |
|
simpr |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> x e. NN0 ) |
25 |
9
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> A. k e. NN0 A e. K ) |
26 |
|
rspcsbela |
|- ( ( x e. NN0 /\ A. k e. NN0 A e. K ) -> [_ x / k ]_ A e. K ) |
27 |
24 25 26
|
syl2anc |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> [_ x / k ]_ A e. K ) |
28 |
|
eqid |
|- ( k e. NN0 |-> A ) = ( k e. NN0 |-> A ) |
29 |
28
|
fvmpts |
|- ( ( x e. NN0 /\ [_ x / k ]_ A e. K ) -> ( ( k e. NN0 |-> A ) ` x ) = [_ x / k ]_ A ) |
30 |
24 27 29
|
syl2anc |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( k e. NN0 |-> A ) ` x ) = [_ x / k ]_ A ) |
31 |
30
|
eqeq1d |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( ( k e. NN0 |-> A ) ` x ) = .0. <-> [_ x / k ]_ A = .0. ) ) |
32 |
31
|
imbi2d |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) <-> ( s < x -> [_ x / k ]_ A = .0. ) ) ) |
33 |
32
|
biimpd |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) -> ( s < x -> [_ x / k ]_ A = .0. ) ) ) |
34 |
33
|
ralimdva |
|- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) -> A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) ) |
35 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
36 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
37 |
|
ringcmn |
|- ( P e. Ring -> P e. CMnd ) |
38 |
5 36 37
|
3syl |
|- ( ph -> P e. CMnd ) |
39 |
38
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> P e. CMnd ) |
40 |
5
|
3ad2ant1 |
|- ( ( ph /\ k e. NN0 /\ A e. K ) -> R e. Ring ) |
41 |
|
simp3 |
|- ( ( ph /\ k e. NN0 /\ A e. K ) -> A e. K ) |
42 |
|
simp2 |
|- ( ( ph /\ k e. NN0 /\ A e. K ) -> k e. NN0 ) |
43 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
44 |
6 1 3 7 43 4 2
|
ply1tmcl |
|- ( ( R e. Ring /\ A e. K /\ k e. NN0 ) -> ( A .* ( k .^ X ) ) e. B ) |
45 |
40 41 42 44
|
syl3anc |
|- ( ( ph /\ k e. NN0 /\ A e. K ) -> ( A .* ( k .^ X ) ) e. B ) |
46 |
45
|
3expia |
|- ( ( ph /\ k e. NN0 ) -> ( A e. K -> ( A .* ( k .^ X ) ) e. B ) ) |
47 |
46
|
ralimdva |
|- ( ph -> ( A. k e. NN0 A e. K -> A. k e. NN0 ( A .* ( k .^ X ) ) e. B ) ) |
48 |
9 47
|
mpd |
|- ( ph -> A. k e. NN0 ( A .* ( k .^ X ) ) e. B ) |
49 |
48
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> A. k e. NN0 ( A .* ( k .^ X ) ) e. B ) |
50 |
|
simplr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> s e. NN0 ) |
51 |
|
nfv |
|- F/ k s < x |
52 |
|
nfcsb1v |
|- F/_ k [_ x / k ]_ A |
53 |
52
|
nfeq1 |
|- F/ k [_ x / k ]_ A = .0. |
54 |
51 53
|
nfim |
|- F/ k ( s < x -> [_ x / k ]_ A = .0. ) |
55 |
|
nfv |
|- F/ x ( s < k -> [_ k / k ]_ A = .0. ) |
56 |
|
breq2 |
|- ( x = k -> ( s < x <-> s < k ) ) |
57 |
|
csbeq1 |
|- ( x = k -> [_ x / k ]_ A = [_ k / k ]_ A ) |
58 |
57
|
eqeq1d |
|- ( x = k -> ( [_ x / k ]_ A = .0. <-> [_ k / k ]_ A = .0. ) ) |
59 |
56 58
|
imbi12d |
|- ( x = k -> ( ( s < x -> [_ x / k ]_ A = .0. ) <-> ( s < k -> [_ k / k ]_ A = .0. ) ) ) |
60 |
54 55 59
|
cbvralw |
|- ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) <-> A. k e. NN0 ( s < k -> [_ k / k ]_ A = .0. ) ) |
61 |
|
csbid |
|- [_ k / k ]_ A = A |
62 |
61
|
eqeq1i |
|- ( [_ k / k ]_ A = .0. <-> A = .0. ) |
63 |
|
oveq1 |
|- ( A = .0. -> ( A .* ( k .^ X ) ) = ( .0. .* ( k .^ X ) ) ) |
64 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
65 |
5 64
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
66 |
65
|
fveq2d |
|- ( ph -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) |
67 |
8 66
|
eqtrid |
|- ( ph -> .0. = ( 0g ` ( Scalar ` P ) ) ) |
68 |
67
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> .0. = ( 0g ` ( Scalar ` P ) ) ) |
69 |
68
|
oveq1d |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( .0. .* ( k .^ X ) ) = ( ( 0g ` ( Scalar ` P ) ) .* ( k .^ X ) ) ) |
70 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
71 |
5 70
|
syl |
|- ( ph -> P e. LMod ) |
72 |
71
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> P e. LMod ) |
73 |
43
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
74 |
5 36 73
|
3syl |
|- ( ph -> ( mulGrp ` P ) e. Mnd ) |
75 |
74
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( mulGrp ` P ) e. Mnd ) |
76 |
|
simpr |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> k e. NN0 ) |
77 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
78 |
3 1 77
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` P ) ) |
79 |
5 78
|
syl |
|- ( ph -> X e. ( Base ` P ) ) |
80 |
79
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> X e. ( Base ` P ) ) |
81 |
43 77
|
mgpbas |
|- ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) |
82 |
81 4
|
mulgnn0cl |
|- ( ( ( mulGrp ` P ) e. Mnd /\ k e. NN0 /\ X e. ( Base ` P ) ) -> ( k .^ X ) e. ( Base ` P ) ) |
83 |
75 76 80 82
|
syl3anc |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( k .^ X ) e. ( Base ` P ) ) |
84 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
85 |
|
eqid |
|- ( 0g ` ( Scalar ` P ) ) = ( 0g ` ( Scalar ` P ) ) |
86 |
77 84 7 85 35
|
lmod0vs |
|- ( ( P e. LMod /\ ( k .^ X ) e. ( Base ` P ) ) -> ( ( 0g ` ( Scalar ` P ) ) .* ( k .^ X ) ) = ( 0g ` P ) ) |
87 |
72 83 86
|
syl2anc |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( ( 0g ` ( Scalar ` P ) ) .* ( k .^ X ) ) = ( 0g ` P ) ) |
88 |
69 87
|
eqtrd |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( .0. .* ( k .^ X ) ) = ( 0g ` P ) ) |
89 |
63 88
|
sylan9eqr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) /\ A = .0. ) -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) |
90 |
89
|
ex |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( A = .0. -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) |
91 |
62 90
|
syl5bi |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( [_ k / k ]_ A = .0. -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) |
92 |
91
|
imim2d |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( ( s < k -> [_ k / k ]_ A = .0. ) -> ( s < k -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) ) |
93 |
92
|
ralimdva |
|- ( ( ph /\ s e. NN0 ) -> ( A. k e. NN0 ( s < k -> [_ k / k ]_ A = .0. ) -> A. k e. NN0 ( s < k -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) ) |
94 |
60 93
|
syl5bi |
|- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> A. k e. NN0 ( s < k -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) ) |
95 |
94
|
imp |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> A. k e. NN0 ( s < k -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) |
96 |
2 35 39 49 50 95
|
gsummptnn0fz |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) = ( P gsum ( k e. ( 0 ... s ) |-> ( A .* ( k .^ X ) ) ) ) ) |
97 |
96
|
fveq2d |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) = ( coe1 ` ( P gsum ( k e. ( 0 ... s ) |-> ( A .* ( k .^ X ) ) ) ) ) ) |
98 |
97
|
fveq1d |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = ( ( coe1 ` ( P gsum ( k e. ( 0 ... s ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) ) |
99 |
5
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> R e. Ring ) |
100 |
11
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> L e. NN0 ) |
101 |
|
elfznn0 |
|- ( k e. ( 0 ... s ) -> k e. NN0 ) |
102 |
|
simpll |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ph ) |
103 |
12
|
adantlr |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> A e. K ) |
104 |
102 76 103
|
3jca |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( ph /\ k e. NN0 /\ A e. K ) ) |
105 |
101 104
|
sylan2 |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. ( 0 ... s ) ) -> ( ph /\ k e. NN0 /\ A e. K ) ) |
106 |
105 45
|
syl |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. ( 0 ... s ) ) -> ( A .* ( k .^ X ) ) e. B ) |
107 |
106
|
ralrimiva |
|- ( ( ph /\ s e. NN0 ) -> A. k e. ( 0 ... s ) ( A .* ( k .^ X ) ) e. B ) |
108 |
107
|
adantr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> A. k e. ( 0 ... s ) ( A .* ( k .^ X ) ) e. B ) |
109 |
|
fzfid |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( 0 ... s ) e. Fin ) |
110 |
1 2 99 100 108 109
|
coe1fzgsumd |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( ( coe1 ` ( P gsum ( k e. ( 0 ... s ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = ( R gsum ( k e. ( 0 ... s ) |-> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) ) ) ) |
111 |
|
nfv |
|- F/ k ( ph /\ s e. NN0 ) |
112 |
|
nfcv |
|- F/_ k NN0 |
113 |
112 54
|
nfralw |
|- F/ k A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) |
114 |
111 113
|
nfan |
|- F/ k ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) |
115 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> R e. Ring ) |
116 |
12
|
expcom |
|- ( k e. NN0 -> ( ph -> A e. K ) ) |
117 |
116 101
|
syl11 |
|- ( ph -> ( k e. ( 0 ... s ) -> A e. K ) ) |
118 |
117
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( k e. ( 0 ... s ) -> A e. K ) ) |
119 |
118
|
imp |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> A e. K ) |
120 |
101
|
adantl |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> k e. NN0 ) |
121 |
8 6 1 3 7 43 4
|
coe1tm |
|- ( ( R e. Ring /\ A e. K /\ k e. NN0 ) -> ( coe1 ` ( A .* ( k .^ X ) ) ) = ( n e. NN0 |-> if ( n = k , A , .0. ) ) ) |
122 |
115 119 120 121
|
syl3anc |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> ( coe1 ` ( A .* ( k .^ X ) ) ) = ( n e. NN0 |-> if ( n = k , A , .0. ) ) ) |
123 |
|
eqeq1 |
|- ( n = L -> ( n = k <-> L = k ) ) |
124 |
123
|
ifbid |
|- ( n = L -> if ( n = k , A , .0. ) = if ( L = k , A , .0. ) ) |
125 |
124
|
adantl |
|- ( ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) /\ n = L ) -> if ( n = k , A , .0. ) = if ( L = k , A , .0. ) ) |
126 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> L e. NN0 ) |
127 |
6 8
|
ring0cl |
|- ( R e. Ring -> .0. e. K ) |
128 |
5 127
|
syl |
|- ( ph -> .0. e. K ) |
129 |
128
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> .0. e. K ) |
130 |
119 129
|
ifcld |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> if ( L = k , A , .0. ) e. K ) |
131 |
122 125 126 130
|
fvmptd |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) = if ( L = k , A , .0. ) ) |
132 |
114 131
|
mpteq2da |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( k e. ( 0 ... s ) |-> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) ) = ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) |
133 |
132
|
oveq2d |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) ) ) = ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) ) |
134 |
|
breq2 |
|- ( x = L -> ( s < x <-> s < L ) ) |
135 |
|
csbeq1 |
|- ( x = L -> [_ x / k ]_ A = [_ L / k ]_ A ) |
136 |
135
|
eqeq1d |
|- ( x = L -> ( [_ x / k ]_ A = .0. <-> [_ L / k ]_ A = .0. ) ) |
137 |
134 136
|
imbi12d |
|- ( x = L -> ( ( s < x -> [_ x / k ]_ A = .0. ) <-> ( s < L -> [_ L / k ]_ A = .0. ) ) ) |
138 |
137
|
rspcva |
|- ( ( L e. NN0 /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( s < L -> [_ L / k ]_ A = .0. ) ) |
139 |
|
nfv |
|- F/ k ( ph /\ ( s e. NN0 /\ s < L ) ) |
140 |
|
nfcsb1v |
|- F/_ k [_ L / k ]_ A |
141 |
140
|
nfeq1 |
|- F/ k [_ L / k ]_ A = .0. |
142 |
139 141
|
nfan |
|- F/ k ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) |
143 |
|
elfz2nn0 |
|- ( k e. ( 0 ... s ) <-> ( k e. NN0 /\ s e. NN0 /\ k <_ s ) ) |
144 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
145 |
144
|
ad2antrr |
|- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> k e. RR ) |
146 |
|
nn0re |
|- ( s e. NN0 -> s e. RR ) |
147 |
146
|
adantl |
|- ( ( k e. NN0 /\ s e. NN0 ) -> s e. RR ) |
148 |
147
|
adantr |
|- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> s e. RR ) |
149 |
|
nn0re |
|- ( L e. NN0 -> L e. RR ) |
150 |
149
|
adantl |
|- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> L e. RR ) |
151 |
|
lelttr |
|- ( ( k e. RR /\ s e. RR /\ L e. RR ) -> ( ( k <_ s /\ s < L ) -> k < L ) ) |
152 |
145 148 150 151
|
syl3anc |
|- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> ( ( k <_ s /\ s < L ) -> k < L ) ) |
153 |
|
animorr |
|- ( ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) /\ k < L ) -> ( L < k \/ k < L ) ) |
154 |
|
df-ne |
|- ( L =/= k <-> -. L = k ) |
155 |
144
|
adantr |
|- ( ( k e. NN0 /\ s e. NN0 ) -> k e. RR ) |
156 |
|
lttri2 |
|- ( ( L e. RR /\ k e. RR ) -> ( L =/= k <-> ( L < k \/ k < L ) ) ) |
157 |
149 155 156
|
syl2anr |
|- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> ( L =/= k <-> ( L < k \/ k < L ) ) ) |
158 |
157
|
adantr |
|- ( ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) /\ k < L ) -> ( L =/= k <-> ( L < k \/ k < L ) ) ) |
159 |
154 158
|
bitr3id |
|- ( ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) /\ k < L ) -> ( -. L = k <-> ( L < k \/ k < L ) ) ) |
160 |
153 159
|
mpbird |
|- ( ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) /\ k < L ) -> -. L = k ) |
161 |
160
|
ex |
|- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> ( k < L -> -. L = k ) ) |
162 |
152 161
|
syld |
|- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> ( ( k <_ s /\ s < L ) -> -. L = k ) ) |
163 |
162
|
exp4b |
|- ( ( k e. NN0 /\ s e. NN0 ) -> ( L e. NN0 -> ( k <_ s -> ( s < L -> -. L = k ) ) ) ) |
164 |
163
|
expimpd |
|- ( k e. NN0 -> ( ( s e. NN0 /\ L e. NN0 ) -> ( k <_ s -> ( s < L -> -. L = k ) ) ) ) |
165 |
164
|
com23 |
|- ( k e. NN0 -> ( k <_ s -> ( ( s e. NN0 /\ L e. NN0 ) -> ( s < L -> -. L = k ) ) ) ) |
166 |
165
|
imp |
|- ( ( k e. NN0 /\ k <_ s ) -> ( ( s e. NN0 /\ L e. NN0 ) -> ( s < L -> -. L = k ) ) ) |
167 |
166
|
3adant2 |
|- ( ( k e. NN0 /\ s e. NN0 /\ k <_ s ) -> ( ( s e. NN0 /\ L e. NN0 ) -> ( s < L -> -. L = k ) ) ) |
168 |
143 167
|
sylbi |
|- ( k e. ( 0 ... s ) -> ( ( s e. NN0 /\ L e. NN0 ) -> ( s < L -> -. L = k ) ) ) |
169 |
168
|
expd |
|- ( k e. ( 0 ... s ) -> ( s e. NN0 -> ( L e. NN0 -> ( s < L -> -. L = k ) ) ) ) |
170 |
11 169
|
syl7 |
|- ( k e. ( 0 ... s ) -> ( s e. NN0 -> ( ph -> ( s < L -> -. L = k ) ) ) ) |
171 |
170
|
com12 |
|- ( s e. NN0 -> ( k e. ( 0 ... s ) -> ( ph -> ( s < L -> -. L = k ) ) ) ) |
172 |
171
|
com24 |
|- ( s e. NN0 -> ( s < L -> ( ph -> ( k e. ( 0 ... s ) -> -. L = k ) ) ) ) |
173 |
172
|
imp |
|- ( ( s e. NN0 /\ s < L ) -> ( ph -> ( k e. ( 0 ... s ) -> -. L = k ) ) ) |
174 |
173
|
impcom |
|- ( ( ph /\ ( s e. NN0 /\ s < L ) ) -> ( k e. ( 0 ... s ) -> -. L = k ) ) |
175 |
174
|
adantr |
|- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( k e. ( 0 ... s ) -> -. L = k ) ) |
176 |
175
|
imp |
|- ( ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) /\ k e. ( 0 ... s ) ) -> -. L = k ) |
177 |
176
|
iffalsed |
|- ( ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) /\ k e. ( 0 ... s ) ) -> if ( L = k , A , .0. ) = .0. ) |
178 |
142 177
|
mpteq2da |
|- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) = ( k e. ( 0 ... s ) |-> .0. ) ) |
179 |
178
|
oveq2d |
|- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = ( R gsum ( k e. ( 0 ... s ) |-> .0. ) ) ) |
180 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
181 |
5 180
|
syl |
|- ( ph -> R e. Mnd ) |
182 |
181
|
adantr |
|- ( ( ph /\ ( s e. NN0 /\ s < L ) ) -> R e. Mnd ) |
183 |
|
ovex |
|- ( 0 ... s ) e. _V |
184 |
8
|
gsumz |
|- ( ( R e. Mnd /\ ( 0 ... s ) e. _V ) -> ( R gsum ( k e. ( 0 ... s ) |-> .0. ) ) = .0. ) |
185 |
182 183 184
|
sylancl |
|- ( ( ph /\ ( s e. NN0 /\ s < L ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> .0. ) ) = .0. ) |
186 |
185
|
adantr |
|- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( R gsum ( k e. ( 0 ... s ) |-> .0. ) ) = .0. ) |
187 |
|
id |
|- ( [_ L / k ]_ A = .0. -> [_ L / k ]_ A = .0. ) |
188 |
187
|
eqcomd |
|- ( [_ L / k ]_ A = .0. -> .0. = [_ L / k ]_ A ) |
189 |
188
|
adantl |
|- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> .0. = [_ L / k ]_ A ) |
190 |
179 186 189
|
3eqtrd |
|- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) |
191 |
190
|
ex |
|- ( ( ph /\ ( s e. NN0 /\ s < L ) ) -> ( [_ L / k ]_ A = .0. -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) |
192 |
191
|
expr |
|- ( ( ph /\ s e. NN0 ) -> ( s < L -> ( [_ L / k ]_ A = .0. -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) |
193 |
192
|
a2d |
|- ( ( ph /\ s e. NN0 ) -> ( ( s < L -> [_ L / k ]_ A = .0. ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) |
194 |
193
|
ex |
|- ( ph -> ( s e. NN0 -> ( ( s < L -> [_ L / k ]_ A = .0. ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) |
195 |
194
|
com13 |
|- ( ( s < L -> [_ L / k ]_ A = .0. ) -> ( s e. NN0 -> ( ph -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) |
196 |
138 195
|
syl |
|- ( ( L e. NN0 /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( s e. NN0 -> ( ph -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) |
197 |
196
|
ex |
|- ( L e. NN0 -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> ( s e. NN0 -> ( ph -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) ) |
198 |
197
|
com24 |
|- ( L e. NN0 -> ( ph -> ( s e. NN0 -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) ) |
199 |
11 198
|
mpcom |
|- ( ph -> ( s e. NN0 -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) |
200 |
199
|
imp31 |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) |
201 |
200
|
com12 |
|- ( s < L -> ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) |
202 |
|
pm3.2 |
|- ( ( ph /\ s e. NN0 ) -> ( -. s < L -> ( ( ph /\ s e. NN0 ) /\ -. s < L ) ) ) |
203 |
202
|
adantr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( -. s < L -> ( ( ph /\ s e. NN0 ) /\ -. s < L ) ) ) |
204 |
181
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> R e. Mnd ) |
205 |
183
|
a1i |
|- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> ( 0 ... s ) e. _V ) |
206 |
11
|
nn0red |
|- ( ph -> L e. RR ) |
207 |
|
lenlt |
|- ( ( L e. RR /\ s e. RR ) -> ( L <_ s <-> -. s < L ) ) |
208 |
206 146 207
|
syl2an |
|- ( ( ph /\ s e. NN0 ) -> ( L <_ s <-> -. s < L ) ) |
209 |
11
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ L <_ s ) -> L e. NN0 ) |
210 |
|
simplr |
|- ( ( ( ph /\ s e. NN0 ) /\ L <_ s ) -> s e. NN0 ) |
211 |
|
simpr |
|- ( ( ( ph /\ s e. NN0 ) /\ L <_ s ) -> L <_ s ) |
212 |
|
elfz2nn0 |
|- ( L e. ( 0 ... s ) <-> ( L e. NN0 /\ s e. NN0 /\ L <_ s ) ) |
213 |
209 210 211 212
|
syl3anbrc |
|- ( ( ( ph /\ s e. NN0 ) /\ L <_ s ) -> L e. ( 0 ... s ) ) |
214 |
213
|
ex |
|- ( ( ph /\ s e. NN0 ) -> ( L <_ s -> L e. ( 0 ... s ) ) ) |
215 |
208 214
|
sylbird |
|- ( ( ph /\ s e. NN0 ) -> ( -. s < L -> L e. ( 0 ... s ) ) ) |
216 |
215
|
imp |
|- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> L e. ( 0 ... s ) ) |
217 |
|
eqcom |
|- ( L = k <-> k = L ) |
218 |
|
ifbi |
|- ( ( L = k <-> k = L ) -> if ( L = k , A , .0. ) = if ( k = L , A , .0. ) ) |
219 |
217 218
|
ax-mp |
|- if ( L = k , A , .0. ) = if ( k = L , A , .0. ) |
220 |
219
|
mpteq2i |
|- ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) = ( k e. ( 0 ... s ) |-> if ( k = L , A , .0. ) ) |
221 |
12 6
|
eleqtrdi |
|- ( ( ph /\ k e. NN0 ) -> A e. ( Base ` R ) ) |
222 |
221
|
ex |
|- ( ph -> ( k e. NN0 -> A e. ( Base ` R ) ) ) |
223 |
222
|
adantr |
|- ( ( ph /\ s e. NN0 ) -> ( k e. NN0 -> A e. ( Base ` R ) ) ) |
224 |
223 101
|
impel |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. ( 0 ... s ) ) -> A e. ( Base ` R ) ) |
225 |
224
|
ralrimiva |
|- ( ( ph /\ s e. NN0 ) -> A. k e. ( 0 ... s ) A e. ( Base ` R ) ) |
226 |
225
|
adantr |
|- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> A. k e. ( 0 ... s ) A e. ( Base ` R ) ) |
227 |
8 204 205 216 220 226
|
gsummpt1n0 |
|- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) |
228 |
203 227
|
syl6com |
|- ( -. s < L -> ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) |
229 |
201 228
|
pm2.61i |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) |
230 |
133 229
|
eqtrd |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) ) ) = [_ L / k ]_ A ) |
231 |
98 110 230
|
3eqtrd |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) |
232 |
231
|
ex |
|- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) ) |
233 |
34 232
|
syld |
|- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) ) |
234 |
233
|
rexlimdva |
|- ( ph -> ( E. s e. NN0 A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) ) |
235 |
23 234
|
mpd |
|- ( ph -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) |