Step |
Hyp |
Ref |
Expression |
1 |
|
gsummoncoe1fzo.p |
|- P = ( Poly1 ` R ) |
2 |
|
gsummoncoe1fzo.b |
|- B = ( Base ` P ) |
3 |
|
gsummoncoe1fzo.x |
|- X = ( var1 ` R ) |
4 |
|
gsummoncoe1fzo.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
5 |
|
gsummoncoe1fzo.r |
|- ( ph -> R e. Ring ) |
6 |
|
gsummoncoe1fzo.k |
|- K = ( Base ` R ) |
7 |
|
gsummoncoe1fzo.m |
|- .* = ( .s ` P ) |
8 |
|
gsummoncoe1fzo.1 |
|- .0. = ( 0g ` R ) |
9 |
|
gsummoncoe1fzo.a |
|- ( ph -> A. k e. ( 0 ..^ N ) A e. K ) |
10 |
|
gsummoncoe1fzo.l |
|- ( ph -> L e. ( 0 ..^ N ) ) |
11 |
|
gsummoncoe1fzo.n |
|- ( ph -> N e. NN0 ) |
12 |
|
gsummoncoe1fzo.2 |
|- ( k = L -> A = C ) |
13 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
14 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
15 |
5 14
|
syl |
|- ( ph -> P e. Ring ) |
16 |
15
|
ringcmnd |
|- ( ph -> P e. CMnd ) |
17 |
|
nn0ex |
|- NN0 e. _V |
18 |
17
|
a1i |
|- ( ph -> NN0 e. _V ) |
19 |
|
simpr |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> k e. ( NN0 \ ( 0 ..^ N ) ) ) |
20 |
19
|
eldifbd |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> -. k e. ( 0 ..^ N ) ) |
21 |
20
|
iffalsed |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> if ( k e. ( 0 ..^ N ) , A , .0. ) = .0. ) |
22 |
21
|
oveq1d |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> ( if ( k e. ( 0 ..^ N ) , A , .0. ) .* ( k .^ X ) ) = ( .0. .* ( k .^ X ) ) ) |
23 |
5
|
adantr |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> R e. Ring ) |
24 |
19
|
eldifad |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> k e. NN0 ) |
25 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
26 |
25 2
|
mgpbas |
|- B = ( Base ` ( mulGrp ` P ) ) |
27 |
25
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
28 |
15 27
|
syl |
|- ( ph -> ( mulGrp ` P ) e. Mnd ) |
29 |
28
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( mulGrp ` P ) e. Mnd ) |
30 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
31 |
3 1 2
|
vr1cl |
|- ( R e. Ring -> X e. B ) |
32 |
5 31
|
syl |
|- ( ph -> X e. B ) |
33 |
32
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> X e. B ) |
34 |
26 4 29 30 33
|
mulgnn0cld |
|- ( ( ph /\ k e. NN0 ) -> ( k .^ X ) e. B ) |
35 |
24 34
|
syldan |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> ( k .^ X ) e. B ) |
36 |
1 2 7 8
|
ply10s0 |
|- ( ( R e. Ring /\ ( k .^ X ) e. B ) -> ( .0. .* ( k .^ X ) ) = ( 0g ` P ) ) |
37 |
23 35 36
|
syl2anc |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> ( .0. .* ( k .^ X ) ) = ( 0g ` P ) ) |
38 |
22 37
|
eqtrd |
|- ( ( ph /\ k e. ( NN0 \ ( 0 ..^ N ) ) ) -> ( if ( k e. ( 0 ..^ N ) , A , .0. ) .* ( k .^ X ) ) = ( 0g ` P ) ) |
39 |
|
fzofi |
|- ( 0 ..^ N ) e. Fin |
40 |
39
|
a1i |
|- ( ph -> ( 0 ..^ N ) e. Fin ) |
41 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
42 |
5 41
|
syl |
|- ( ph -> P e. LMod ) |
43 |
42
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> P e. LMod ) |
44 |
9
|
r19.21bi |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> A e. K ) |
45 |
44
|
adantlr |
|- ( ( ( ph /\ k e. NN0 ) /\ k e. ( 0 ..^ N ) ) -> A e. K ) |
46 |
6 8
|
ring0cl |
|- ( R e. Ring -> .0. e. K ) |
47 |
5 46
|
syl |
|- ( ph -> .0. e. K ) |
48 |
47
|
ad2antrr |
|- ( ( ( ph /\ k e. NN0 ) /\ -. k e. ( 0 ..^ N ) ) -> .0. e. K ) |
49 |
45 48
|
ifclda |
|- ( ( ph /\ k e. NN0 ) -> if ( k e. ( 0 ..^ N ) , A , .0. ) e. K ) |
50 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
51 |
5 50
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
52 |
51
|
fveq2d |
|- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
53 |
6 52
|
eqtrid |
|- ( ph -> K = ( Base ` ( Scalar ` P ) ) ) |
54 |
53
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> K = ( Base ` ( Scalar ` P ) ) ) |
55 |
49 54
|
eleqtrd |
|- ( ( ph /\ k e. NN0 ) -> if ( k e. ( 0 ..^ N ) , A , .0. ) e. ( Base ` ( Scalar ` P ) ) ) |
56 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
57 |
|
eqid |
|- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
58 |
2 56 7 57
|
lmodvscl |
|- ( ( P e. LMod /\ if ( k e. ( 0 ..^ N ) , A , .0. ) e. ( Base ` ( Scalar ` P ) ) /\ ( k .^ X ) e. B ) -> ( if ( k e. ( 0 ..^ N ) , A , .0. ) .* ( k .^ X ) ) e. B ) |
59 |
43 55 34 58
|
syl3anc |
|- ( ( ph /\ k e. NN0 ) -> ( if ( k e. ( 0 ..^ N ) , A , .0. ) .* ( k .^ X ) ) e. B ) |
60 |
|
fzo0ssnn0 |
|- ( 0 ..^ N ) C_ NN0 |
61 |
60
|
a1i |
|- ( ph -> ( 0 ..^ N ) C_ NN0 ) |
62 |
2 13 16 18 38 40 59 61
|
gsummptres2 |
|- ( ph -> ( P gsum ( k e. NN0 |-> ( if ( k e. ( 0 ..^ N ) , A , .0. ) .* ( k .^ X ) ) ) ) = ( P gsum ( k e. ( 0 ..^ N ) |-> ( if ( k e. ( 0 ..^ N ) , A , .0. ) .* ( k .^ X ) ) ) ) ) |
63 |
|
simpr |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> k e. ( 0 ..^ N ) ) |
64 |
63
|
iftrued |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> if ( k e. ( 0 ..^ N ) , A , .0. ) = A ) |
65 |
64
|
oveq1d |
|- ( ( ph /\ k e. ( 0 ..^ N ) ) -> ( if ( k e. ( 0 ..^ N ) , A , .0. ) .* ( k .^ X ) ) = ( A .* ( k .^ X ) ) ) |
66 |
65
|
mpteq2dva |
|- ( ph -> ( k e. ( 0 ..^ N ) |-> ( if ( k e. ( 0 ..^ N ) , A , .0. ) .* ( k .^ X ) ) ) = ( k e. ( 0 ..^ N ) |-> ( A .* ( k .^ X ) ) ) ) |
67 |
66
|
oveq2d |
|- ( ph -> ( P gsum ( k e. ( 0 ..^ N ) |-> ( if ( k e. ( 0 ..^ N ) , A , .0. ) .* ( k .^ X ) ) ) ) = ( P gsum ( k e. ( 0 ..^ N ) |-> ( A .* ( k .^ X ) ) ) ) ) |
68 |
62 67
|
eqtrd |
|- ( ph -> ( P gsum ( k e. NN0 |-> ( if ( k e. ( 0 ..^ N ) , A , .0. ) .* ( k .^ X ) ) ) ) = ( P gsum ( k e. ( 0 ..^ N ) |-> ( A .* ( k .^ X ) ) ) ) ) |
69 |
68
|
fveq2d |
|- ( ph -> ( coe1 ` ( P gsum ( k e. NN0 |-> ( if ( k e. ( 0 ..^ N ) , A , .0. ) .* ( k .^ X ) ) ) ) ) = ( coe1 ` ( P gsum ( k e. ( 0 ..^ N ) |-> ( A .* ( k .^ X ) ) ) ) ) ) |
70 |
69
|
fveq1d |
|- ( ph -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( if ( k e. ( 0 ..^ N ) , A , .0. ) .* ( k .^ X ) ) ) ) ) ` L ) = ( ( coe1 ` ( P gsum ( k e. ( 0 ..^ N ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) ) |
71 |
49
|
ralrimiva |
|- ( ph -> A. k e. NN0 if ( k e. ( 0 ..^ N ) , A , .0. ) e. K ) |
72 |
|
eqid |
|- ( k e. NN0 |-> if ( k e. ( 0 ..^ N ) , A , .0. ) ) = ( k e. NN0 |-> if ( k e. ( 0 ..^ N ) , A , .0. ) ) |
73 |
72 18 40 44 47
|
mptiffisupp |
|- ( ph -> ( k e. NN0 |-> if ( k e. ( 0 ..^ N ) , A , .0. ) ) finSupp .0. ) |
74 |
60 10
|
sselid |
|- ( ph -> L e. NN0 ) |
75 |
1 2 3 4 5 6 7 8 71 73 74
|
gsummoncoe1 |
|- ( ph -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( if ( k e. ( 0 ..^ N ) , A , .0. ) .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ if ( k e. ( 0 ..^ N ) , A , .0. ) ) |
76 |
70 75
|
eqtr3d |
|- ( ph -> ( ( coe1 ` ( P gsum ( k e. ( 0 ..^ N ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ if ( k e. ( 0 ..^ N ) , A , .0. ) ) |
77 |
|
eleq1 |
|- ( k = L -> ( k e. ( 0 ..^ N ) <-> L e. ( 0 ..^ N ) ) ) |
78 |
77 12
|
ifbieq1d |
|- ( k = L -> if ( k e. ( 0 ..^ N ) , A , .0. ) = if ( L e. ( 0 ..^ N ) , C , .0. ) ) |
79 |
78
|
adantl |
|- ( ( ph /\ k = L ) -> if ( k e. ( 0 ..^ N ) , A , .0. ) = if ( L e. ( 0 ..^ N ) , C , .0. ) ) |
80 |
10 79
|
csbied |
|- ( ph -> [_ L / k ]_ if ( k e. ( 0 ..^ N ) , A , .0. ) = if ( L e. ( 0 ..^ N ) , C , .0. ) ) |
81 |
10
|
iftrued |
|- ( ph -> if ( L e. ( 0 ..^ N ) , C , .0. ) = C ) |
82 |
76 80 81
|
3eqtrd |
|- ( ph -> ( ( coe1 ` ( P gsum ( k e. ( 0 ..^ N ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = C ) |