| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummptcl.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsummptcl.g |  |-  ( ph -> G e. CMnd ) | 
						
							| 3 |  | gsummptcl.n |  |-  ( ph -> N e. Fin ) | 
						
							| 4 |  | gsummptcl.e |  |-  ( ph -> A. i e. N X e. B ) | 
						
							| 5 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 6 |  | eqid |  |-  ( i e. N |-> X ) = ( i e. N |-> X ) | 
						
							| 7 | 6 | fmpt |  |-  ( A. i e. N X e. B <-> ( i e. N |-> X ) : N --> B ) | 
						
							| 8 | 4 7 | sylib |  |-  ( ph -> ( i e. N |-> X ) : N --> B ) | 
						
							| 9 | 6 | fnmpt |  |-  ( A. i e. N X e. B -> ( i e. N |-> X ) Fn N ) | 
						
							| 10 | 4 9 | syl |  |-  ( ph -> ( i e. N |-> X ) Fn N ) | 
						
							| 11 |  | fvexd |  |-  ( ph -> ( 0g ` G ) e. _V ) | 
						
							| 12 | 10 3 11 | fndmfifsupp |  |-  ( ph -> ( i e. N |-> X ) finSupp ( 0g ` G ) ) | 
						
							| 13 | 1 5 2 3 8 12 | gsumcl |  |-  ( ph -> ( G gsum ( i e. N |-> X ) ) e. B ) |