| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummptfidmadd.b |
|- B = ( Base ` G ) |
| 2 |
|
gsummptfidmadd.p |
|- .+ = ( +g ` G ) |
| 3 |
|
gsummptfidmadd.g |
|- ( ph -> G e. CMnd ) |
| 4 |
|
gsummptfidmadd.a |
|- ( ph -> A e. Fin ) |
| 5 |
|
gsummptfidmadd.c |
|- ( ( ph /\ x e. A ) -> C e. B ) |
| 6 |
|
gsummptfidmadd.d |
|- ( ( ph /\ x e. A ) -> D e. B ) |
| 7 |
|
gsummptfidmadd.f |
|- F = ( x e. A |-> C ) |
| 8 |
|
gsummptfidmadd.h |
|- H = ( x e. A |-> D ) |
| 9 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 10 |
7
|
a1i |
|- ( ph -> F = ( x e. A |-> C ) ) |
| 11 |
8
|
a1i |
|- ( ph -> H = ( x e. A |-> D ) ) |
| 12 |
|
fvexd |
|- ( ph -> ( 0g ` G ) e. _V ) |
| 13 |
7 4 5 12
|
fsuppmptdm |
|- ( ph -> F finSupp ( 0g ` G ) ) |
| 14 |
8 4 6 12
|
fsuppmptdm |
|- ( ph -> H finSupp ( 0g ` G ) ) |
| 15 |
1 9 2 3 4 5 6 10 11 13 14
|
gsummptfsadd |
|- ( ph -> ( G gsum ( x e. A |-> ( C .+ D ) ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |