| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummptfidmadd.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsummptfidmadd.p |  |-  .+ = ( +g ` G ) | 
						
							| 3 |  | gsummptfidmadd.g |  |-  ( ph -> G e. CMnd ) | 
						
							| 4 |  | gsummptfidmadd.a |  |-  ( ph -> A e. Fin ) | 
						
							| 5 |  | gsummptfidmadd.c |  |-  ( ( ph /\ x e. A ) -> C e. B ) | 
						
							| 6 |  | gsummptfidmadd.d |  |-  ( ( ph /\ x e. A ) -> D e. B ) | 
						
							| 7 |  | gsummptfidmadd.f |  |-  F = ( x e. A |-> C ) | 
						
							| 8 |  | gsummptfidmadd.h |  |-  H = ( x e. A |-> D ) | 
						
							| 9 | 7 | a1i |  |-  ( ph -> F = ( x e. A |-> C ) ) | 
						
							| 10 | 8 | a1i |  |-  ( ph -> H = ( x e. A |-> D ) ) | 
						
							| 11 | 4 5 6 9 10 | offval2 |  |-  ( ph -> ( F oF .+ H ) = ( x e. A |-> ( C .+ D ) ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( ph -> ( G gsum ( F oF .+ H ) ) = ( G gsum ( x e. A |-> ( C .+ D ) ) ) ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 | gsummptfidmadd |  |-  ( ph -> ( G gsum ( x e. A |-> ( C .+ D ) ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) | 
						
							| 14 | 12 13 | eqtrd |  |-  ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |