Description: Inverse of a group sum expressed as mapping with a finite domain. (Contributed by AV, 23-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsuminv.b | |- B = ( Base ` G ) |
|
gsuminv.z | |- .0. = ( 0g ` G ) |
||
gsuminv.p | |- I = ( invg ` G ) |
||
gsuminv.g | |- ( ph -> G e. Abel ) |
||
gsummptfidminv.a | |- ( ph -> A e. Fin ) |
||
gsummptfidminv.c | |- ( ( ph /\ x e. A ) -> C e. B ) |
||
gsummptfidminv.f | |- F = ( x e. A |-> C ) |
||
Assertion | gsummptfidminv | |- ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsuminv.b | |- B = ( Base ` G ) |
|
2 | gsuminv.z | |- .0. = ( 0g ` G ) |
|
3 | gsuminv.p | |- I = ( invg ` G ) |
|
4 | gsuminv.g | |- ( ph -> G e. Abel ) |
|
5 | gsummptfidminv.a | |- ( ph -> A e. Fin ) |
|
6 | gsummptfidminv.c | |- ( ( ph /\ x e. A ) -> C e. B ) |
|
7 | gsummptfidminv.f | |- F = ( x e. A |-> C ) |
|
8 | 6 7 | fmptd | |- ( ph -> F : A --> B ) |
9 | 2 | fvexi | |- .0. e. _V |
10 | 9 | a1i | |- ( ph -> .0. e. _V ) |
11 | 7 5 6 10 | fsuppmptdm | |- ( ph -> F finSupp .0. ) |
12 | 1 2 3 4 5 8 11 | gsuminv | |- ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) ) |