Description: Inverse of a group sum expressed as mapping with a finite domain. (Contributed by AV, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsuminv.b | |- B = ( Base ` G ) | |
| gsuminv.z | |- .0. = ( 0g ` G ) | ||
| gsuminv.p | |- I = ( invg ` G ) | ||
| gsuminv.g | |- ( ph -> G e. Abel ) | ||
| gsummptfidminv.a | |- ( ph -> A e. Fin ) | ||
| gsummptfidminv.c | |- ( ( ph /\ x e. A ) -> C e. B ) | ||
| gsummptfidminv.f | |- F = ( x e. A |-> C ) | ||
| Assertion | gsummptfidminv | |- ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gsuminv.b | |- B = ( Base ` G ) | |
| 2 | gsuminv.z | |- .0. = ( 0g ` G ) | |
| 3 | gsuminv.p | |- I = ( invg ` G ) | |
| 4 | gsuminv.g | |- ( ph -> G e. Abel ) | |
| 5 | gsummptfidminv.a | |- ( ph -> A e. Fin ) | |
| 6 | gsummptfidminv.c | |- ( ( ph /\ x e. A ) -> C e. B ) | |
| 7 | gsummptfidminv.f | |- F = ( x e. A |-> C ) | |
| 8 | 6 7 | fmptd | |- ( ph -> F : A --> B ) | 
| 9 | 2 | fvexi | |- .0. e. _V | 
| 10 | 9 | a1i | |- ( ph -> .0. e. _V ) | 
| 11 | 7 5 6 10 | fsuppmptdm | |- ( ph -> F finSupp .0. ) | 
| 12 | 1 2 3 4 5 8 11 | gsuminv | |- ( ph -> ( G gsum ( I o. F ) ) = ( I ` ( G gsum F ) ) ) |