Metamath Proof Explorer


Theorem gsummptfidmsplit

Description: Split a group sum expressed as mapping with a finite domain into two parts. (Contributed by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsummptfidmsplit.b
|- B = ( Base ` G )
gsummptfidmsplit.p
|- .+ = ( +g ` G )
gsummptfidmsplit.g
|- ( ph -> G e. CMnd )
gsummptfidmsplit.a
|- ( ph -> A e. Fin )
gsummptfidmsplit.y
|- ( ( ph /\ k e. A ) -> Y e. B )
gsummptfidmsplit.i
|- ( ph -> ( C i^i D ) = (/) )
gsummptfidmsplit.u
|- ( ph -> A = ( C u. D ) )
Assertion gsummptfidmsplit
|- ( ph -> ( G gsum ( k e. A |-> Y ) ) = ( ( G gsum ( k e. C |-> Y ) ) .+ ( G gsum ( k e. D |-> Y ) ) ) )

Proof

Step Hyp Ref Expression
1 gsummptfidmsplit.b
 |-  B = ( Base ` G )
2 gsummptfidmsplit.p
 |-  .+ = ( +g ` G )
3 gsummptfidmsplit.g
 |-  ( ph -> G e. CMnd )
4 gsummptfidmsplit.a
 |-  ( ph -> A e. Fin )
5 gsummptfidmsplit.y
 |-  ( ( ph /\ k e. A ) -> Y e. B )
6 gsummptfidmsplit.i
 |-  ( ph -> ( C i^i D ) = (/) )
7 gsummptfidmsplit.u
 |-  ( ph -> A = ( C u. D ) )
8 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
9 eqid
 |-  ( k e. A |-> Y ) = ( k e. A |-> Y )
10 fvexd
 |-  ( ph -> ( 0g ` G ) e. _V )
11 9 4 5 10 fsuppmptdm
 |-  ( ph -> ( k e. A |-> Y ) finSupp ( 0g ` G ) )
12 1 8 2 3 4 5 11 6 7 gsumsplit2
 |-  ( ph -> ( G gsum ( k e. A |-> Y ) ) = ( ( G gsum ( k e. C |-> Y ) ) .+ ( G gsum ( k e. D |-> Y ) ) ) )