Description: Split a group sum expressed as mapping with a finite domain into two parts. (Contributed by AV, 23-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsummptfidmsplit.b | |- B = ( Base ` G ) |
|
gsummptfidmsplit.p | |- .+ = ( +g ` G ) |
||
gsummptfidmsplit.g | |- ( ph -> G e. CMnd ) |
||
gsummptfidmsplit.a | |- ( ph -> A e. Fin ) |
||
gsummptfidmsplit.y | |- ( ( ph /\ k e. A ) -> Y e. B ) |
||
gsummptfidmsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
||
gsummptfidmsplit.u | |- ( ph -> A = ( C u. D ) ) |
||
Assertion | gsummptfidmsplit | |- ( ph -> ( G gsum ( k e. A |-> Y ) ) = ( ( G gsum ( k e. C |-> Y ) ) .+ ( G gsum ( k e. D |-> Y ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptfidmsplit.b | |- B = ( Base ` G ) |
|
2 | gsummptfidmsplit.p | |- .+ = ( +g ` G ) |
|
3 | gsummptfidmsplit.g | |- ( ph -> G e. CMnd ) |
|
4 | gsummptfidmsplit.a | |- ( ph -> A e. Fin ) |
|
5 | gsummptfidmsplit.y | |- ( ( ph /\ k e. A ) -> Y e. B ) |
|
6 | gsummptfidmsplit.i | |- ( ph -> ( C i^i D ) = (/) ) |
|
7 | gsummptfidmsplit.u | |- ( ph -> A = ( C u. D ) ) |
|
8 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
9 | eqid | |- ( k e. A |-> Y ) = ( k e. A |-> Y ) |
|
10 | fvexd | |- ( ph -> ( 0g ` G ) e. _V ) |
|
11 | 9 4 5 10 | fsuppmptdm | |- ( ph -> ( k e. A |-> Y ) finSupp ( 0g ` G ) ) |
12 | 1 8 2 3 4 5 11 6 7 | gsumsplit2 | |- ( ph -> ( G gsum ( k e. A |-> Y ) ) = ( ( G gsum ( k e. C |-> Y ) ) .+ ( G gsum ( k e. D |-> Y ) ) ) ) |