Description: Re-index a finite group sum as map, using a bijection. (Contributed by by AV, 23-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsummptcl.b | |- B = ( Base ` G ) |
|
gsummptcl.g | |- ( ph -> G e. CMnd ) |
||
gsummptcl.n | |- ( ph -> N e. Fin ) |
||
gsummptcl.e | |- ( ph -> A. i e. N X e. B ) |
||
gsummptfif1o.f | |- F = ( i e. N |-> X ) |
||
gsummptfif1o.h | |- ( ph -> H : C -1-1-onto-> N ) |
||
Assertion | gsummptfif1o | |- ( ph -> ( G gsum F ) = ( G gsum ( F o. H ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptcl.b | |- B = ( Base ` G ) |
|
2 | gsummptcl.g | |- ( ph -> G e. CMnd ) |
|
3 | gsummptcl.n | |- ( ph -> N e. Fin ) |
|
4 | gsummptcl.e | |- ( ph -> A. i e. N X e. B ) |
|
5 | gsummptfif1o.f | |- F = ( i e. N |-> X ) |
|
6 | gsummptfif1o.h | |- ( ph -> H : C -1-1-onto-> N ) |
|
7 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
8 | 5 | fmpt | |- ( A. i e. N X e. B <-> F : N --> B ) |
9 | 4 8 | sylib | |- ( ph -> F : N --> B ) |
10 | fvexd | |- ( ph -> ( 0g ` G ) e. _V ) |
|
11 | 9 3 10 | fdmfifsupp | |- ( ph -> F finSupp ( 0g ` G ) ) |
12 | 1 7 2 3 9 11 6 | gsumf1o | |- ( ph -> ( G gsum F ) = ( G gsum ( F o. H ) ) ) |