Description: Re-index a finite group sum as map, using a bijection. (Contributed by by AV, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptcl.b | |- B = ( Base ` G ) | |
| gsummptcl.g | |- ( ph -> G e. CMnd ) | ||
| gsummptcl.n | |- ( ph -> N e. Fin ) | ||
| gsummptcl.e | |- ( ph -> A. i e. N X e. B ) | ||
| gsummptfif1o.f | |- F = ( i e. N |-> X ) | ||
| gsummptfif1o.h | |- ( ph -> H : C -1-1-onto-> N ) | ||
| Assertion | gsummptfif1o | |- ( ph -> ( G gsum F ) = ( G gsum ( F o. H ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gsummptcl.b | |- B = ( Base ` G ) | |
| 2 | gsummptcl.g | |- ( ph -> G e. CMnd ) | |
| 3 | gsummptcl.n | |- ( ph -> N e. Fin ) | |
| 4 | gsummptcl.e | |- ( ph -> A. i e. N X e. B ) | |
| 5 | gsummptfif1o.f | |- F = ( i e. N |-> X ) | |
| 6 | gsummptfif1o.h | |- ( ph -> H : C -1-1-onto-> N ) | |
| 7 | eqid | |- ( 0g ` G ) = ( 0g ` G ) | |
| 8 | 5 | fmpt | |- ( A. i e. N X e. B <-> F : N --> B ) | 
| 9 | 4 8 | sylib | |- ( ph -> F : N --> B ) | 
| 10 | fvexd | |- ( ph -> ( 0g ` G ) e. _V ) | |
| 11 | 9 3 10 | fdmfifsupp | |- ( ph -> F finSupp ( 0g ` G ) ) | 
| 12 | 1 7 2 3 9 11 6 | gsumf1o | |- ( ph -> ( G gsum F ) = ( G gsum ( F o. H ) ) ) |