Metamath Proof Explorer


Theorem gsummptfif1o

Description: Re-index a finite group sum as map, using a bijection. (Contributed by by AV, 23-Jul-2019)

Ref Expression
Hypotheses gsummptcl.b
|- B = ( Base ` G )
gsummptcl.g
|- ( ph -> G e. CMnd )
gsummptcl.n
|- ( ph -> N e. Fin )
gsummptcl.e
|- ( ph -> A. i e. N X e. B )
gsummptfif1o.f
|- F = ( i e. N |-> X )
gsummptfif1o.h
|- ( ph -> H : C -1-1-onto-> N )
Assertion gsummptfif1o
|- ( ph -> ( G gsum F ) = ( G gsum ( F o. H ) ) )

Proof

Step Hyp Ref Expression
1 gsummptcl.b
 |-  B = ( Base ` G )
2 gsummptcl.g
 |-  ( ph -> G e. CMnd )
3 gsummptcl.n
 |-  ( ph -> N e. Fin )
4 gsummptcl.e
 |-  ( ph -> A. i e. N X e. B )
5 gsummptfif1o.f
 |-  F = ( i e. N |-> X )
6 gsummptfif1o.h
 |-  ( ph -> H : C -1-1-onto-> N )
7 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
8 5 fmpt
 |-  ( A. i e. N X e. B <-> F : N --> B )
9 4 8 sylib
 |-  ( ph -> F : N --> B )
10 fvexd
 |-  ( ph -> ( 0g ` G ) e. _V )
11 9 3 10 fdmfifsupp
 |-  ( ph -> F finSupp ( 0g ` G ) )
12 1 7 2 3 9 11 6 gsumf1o
 |-  ( ph -> ( G gsum F ) = ( G gsum ( F o. H ) ) )