Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptfzsplit.b |
|- B = ( Base ` G ) |
2 |
|
gsummptfzsplit.p |
|- .+ = ( +g ` G ) |
3 |
|
gsummptfzsplit.g |
|- ( ph -> G e. CMnd ) |
4 |
|
gsummptfzsplit.n |
|- ( ph -> N e. NN0 ) |
5 |
|
gsummptfzsplitl.y |
|- ( ( ph /\ k e. ( 0 ... N ) ) -> Y e. B ) |
6 |
|
fzfid |
|- ( ph -> ( 0 ... N ) e. Fin ) |
7 |
|
incom |
|- ( ( 1 ... N ) i^i { 0 } ) = ( { 0 } i^i ( 1 ... N ) ) |
8 |
7
|
a1i |
|- ( ph -> ( ( 1 ... N ) i^i { 0 } ) = ( { 0 } i^i ( 1 ... N ) ) ) |
9 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
10 |
9
|
oveq1i |
|- ( 1 ... N ) = ( ( 0 + 1 ) ... N ) |
11 |
10
|
a1i |
|- ( ph -> ( 1 ... N ) = ( ( 0 + 1 ) ... N ) ) |
12 |
11
|
ineq2d |
|- ( ph -> ( { 0 } i^i ( 1 ... N ) ) = ( { 0 } i^i ( ( 0 + 1 ) ... N ) ) ) |
13 |
|
elnn0uz |
|- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
14 |
13
|
biimpi |
|- ( N e. NN0 -> N e. ( ZZ>= ` 0 ) ) |
15 |
|
fzpreddisj |
|- ( N e. ( ZZ>= ` 0 ) -> ( { 0 } i^i ( ( 0 + 1 ) ... N ) ) = (/) ) |
16 |
4 14 15
|
3syl |
|- ( ph -> ( { 0 } i^i ( ( 0 + 1 ) ... N ) ) = (/) ) |
17 |
8 12 16
|
3eqtrd |
|- ( ph -> ( ( 1 ... N ) i^i { 0 } ) = (/) ) |
18 |
|
fzpred |
|- ( N e. ( ZZ>= ` 0 ) -> ( 0 ... N ) = ( { 0 } u. ( ( 0 + 1 ) ... N ) ) ) |
19 |
4 14 18
|
3syl |
|- ( ph -> ( 0 ... N ) = ( { 0 } u. ( ( 0 + 1 ) ... N ) ) ) |
20 |
|
uncom |
|- ( { 0 } u. ( ( 0 + 1 ) ... N ) ) = ( ( ( 0 + 1 ) ... N ) u. { 0 } ) |
21 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
22 |
21
|
oveq1i |
|- ( ( 0 + 1 ) ... N ) = ( 1 ... N ) |
23 |
22
|
uneq1i |
|- ( ( ( 0 + 1 ) ... N ) u. { 0 } ) = ( ( 1 ... N ) u. { 0 } ) |
24 |
20 23
|
eqtri |
|- ( { 0 } u. ( ( 0 + 1 ) ... N ) ) = ( ( 1 ... N ) u. { 0 } ) |
25 |
19 24
|
eqtrdi |
|- ( ph -> ( 0 ... N ) = ( ( 1 ... N ) u. { 0 } ) ) |
26 |
1 2 3 6 5 17 25
|
gsummptfidmsplit |
|- ( ph -> ( G gsum ( k e. ( 0 ... N ) |-> Y ) ) = ( ( G gsum ( k e. ( 1 ... N ) |-> Y ) ) .+ ( G gsum ( k e. { 0 } |-> Y ) ) ) ) |