Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. (Contributed by AV, 17-Feb-2019) (Proof shortened by AV, 11-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummpt1n0.0 | |- .0. = ( 0g ` G ) |
|
| gsummpt1n0.g | |- ( ph -> G e. Mnd ) |
||
| gsummpt1n0.i | |- ( ph -> I e. W ) |
||
| gsummpt1n0.x | |- ( ph -> X e. I ) |
||
| gsummpt1n0.f | |- F = ( n e. I |-> if ( n = X , A , .0. ) ) |
||
| gsummptif1n0.a | |- ( ph -> A e. ( Base ` G ) ) |
||
| Assertion | gsummptif1n0 | |- ( ph -> ( G gsum F ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummpt1n0.0 | |- .0. = ( 0g ` G ) |
|
| 2 | gsummpt1n0.g | |- ( ph -> G e. Mnd ) |
|
| 3 | gsummpt1n0.i | |- ( ph -> I e. W ) |
|
| 4 | gsummpt1n0.x | |- ( ph -> X e. I ) |
|
| 5 | gsummpt1n0.f | |- F = ( n e. I |-> if ( n = X , A , .0. ) ) |
|
| 6 | gsummptif1n0.a | |- ( ph -> A e. ( Base ` G ) ) |
|
| 7 | 6 | ralrimivw | |- ( ph -> A. n e. I A e. ( Base ` G ) ) |
| 8 | 1 2 3 4 5 7 | gsummpt1n0 | |- ( ph -> ( G gsum F ) = [_ X / n ]_ A ) |
| 9 | csbconstg | |- ( X e. I -> [_ X / n ]_ A = A ) |
|
| 10 | 4 9 | syl | |- ( ph -> [_ X / n ]_ A = A ) |
| 11 | 8 10 | eqtrd | |- ( ph -> ( G gsum F ) = A ) |