Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. (Contributed by AV, 17-Feb-2019) (Proof shortened by AV, 11-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsummpt1n0.0 | |- .0. = ( 0g ` G ) |
|
gsummpt1n0.g | |- ( ph -> G e. Mnd ) |
||
gsummpt1n0.i | |- ( ph -> I e. W ) |
||
gsummpt1n0.x | |- ( ph -> X e. I ) |
||
gsummpt1n0.f | |- F = ( n e. I |-> if ( n = X , A , .0. ) ) |
||
gsummptif1n0.a | |- ( ph -> A e. ( Base ` G ) ) |
||
Assertion | gsummptif1n0 | |- ( ph -> ( G gsum F ) = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummpt1n0.0 | |- .0. = ( 0g ` G ) |
|
2 | gsummpt1n0.g | |- ( ph -> G e. Mnd ) |
|
3 | gsummpt1n0.i | |- ( ph -> I e. W ) |
|
4 | gsummpt1n0.x | |- ( ph -> X e. I ) |
|
5 | gsummpt1n0.f | |- F = ( n e. I |-> if ( n = X , A , .0. ) ) |
|
6 | gsummptif1n0.a | |- ( ph -> A e. ( Base ` G ) ) |
|
7 | 6 | ralrimivw | |- ( ph -> A. n e. I A e. ( Base ` G ) ) |
8 | 1 2 3 4 5 7 | gsummpt1n0 | |- ( ph -> ( G gsum F ) = [_ X / n ]_ A ) |
9 | csbconstg | |- ( X e. I -> [_ X / n ]_ A = A ) |
|
10 | 4 9 | syl | |- ( ph -> [_ X / n ]_ A = A ) |
11 | 8 10 | eqtrd | |- ( ph -> ( G gsum F ) = A ) |