| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummptmhm.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsummptmhm.z |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | gsummptmhm.g |  |-  ( ph -> G e. CMnd ) | 
						
							| 4 |  | gsummptmhm.h |  |-  ( ph -> H e. Mnd ) | 
						
							| 5 |  | gsummptmhm.a |  |-  ( ph -> A e. V ) | 
						
							| 6 |  | gsummptmhm.k |  |-  ( ph -> K e. ( G MndHom H ) ) | 
						
							| 7 |  | gsummptmhm.c |  |-  ( ( ph /\ x e. A ) -> C e. B ) | 
						
							| 8 |  | gsummptmhm.w |  |-  ( ph -> ( x e. A |-> C ) finSupp .0. ) | 
						
							| 9 |  | eqidd |  |-  ( ph -> ( x e. A |-> C ) = ( x e. A |-> C ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 11 | 1 10 | mhmf |  |-  ( K e. ( G MndHom H ) -> K : B --> ( Base ` H ) ) | 
						
							| 12 |  | ffn |  |-  ( K : B --> ( Base ` H ) -> K Fn B ) | 
						
							| 13 | 6 11 12 | 3syl |  |-  ( ph -> K Fn B ) | 
						
							| 14 |  | dffn5 |  |-  ( K Fn B <-> K = ( y e. B |-> ( K ` y ) ) ) | 
						
							| 15 | 13 14 | sylib |  |-  ( ph -> K = ( y e. B |-> ( K ` y ) ) ) | 
						
							| 16 |  | fveq2 |  |-  ( y = C -> ( K ` y ) = ( K ` C ) ) | 
						
							| 17 | 7 9 15 16 | fmptco |  |-  ( ph -> ( K o. ( x e. A |-> C ) ) = ( x e. A |-> ( K ` C ) ) ) | 
						
							| 18 | 17 | oveq2d |  |-  ( ph -> ( H gsum ( K o. ( x e. A |-> C ) ) ) = ( H gsum ( x e. A |-> ( K ` C ) ) ) ) | 
						
							| 19 | 7 | fmpttd |  |-  ( ph -> ( x e. A |-> C ) : A --> B ) | 
						
							| 20 | 1 2 3 4 5 6 19 8 | gsummhm |  |-  ( ph -> ( H gsum ( K o. ( x e. A |-> C ) ) ) = ( K ` ( G gsum ( x e. A |-> C ) ) ) ) | 
						
							| 21 | 18 20 | eqtr3d |  |-  ( ph -> ( H gsum ( x e. A |-> ( K ` C ) ) ) = ( K ` ( G gsum ( x e. A |-> C ) ) ) ) |