Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptnn0fz.b |
|- B = ( Base ` G ) |
2 |
|
gsummptnn0fz.0 |
|- .0. = ( 0g ` G ) |
3 |
|
gsummptnn0fz.g |
|- ( ph -> G e. CMnd ) |
4 |
|
gsummptnn0fz.f |
|- ( ph -> A. k e. NN0 C e. B ) |
5 |
|
gsummptnn0fz.s |
|- ( ph -> S e. NN0 ) |
6 |
|
gsummptnn0fz.u |
|- ( ph -> A. k e. NN0 ( S < k -> C = .0. ) ) |
7 |
|
nfv |
|- F/ x ( S < k -> C = .0. ) |
8 |
|
nfv |
|- F/ k S < x |
9 |
|
nfcsb1v |
|- F/_ k [_ x / k ]_ C |
10 |
9
|
nfeq1 |
|- F/ k [_ x / k ]_ C = .0. |
11 |
8 10
|
nfim |
|- F/ k ( S < x -> [_ x / k ]_ C = .0. ) |
12 |
|
breq2 |
|- ( k = x -> ( S < k <-> S < x ) ) |
13 |
|
csbeq1a |
|- ( k = x -> C = [_ x / k ]_ C ) |
14 |
13
|
eqeq1d |
|- ( k = x -> ( C = .0. <-> [_ x / k ]_ C = .0. ) ) |
15 |
12 14
|
imbi12d |
|- ( k = x -> ( ( S < k -> C = .0. ) <-> ( S < x -> [_ x / k ]_ C = .0. ) ) ) |
16 |
7 11 15
|
cbvralw |
|- ( A. k e. NN0 ( S < k -> C = .0. ) <-> A. x e. NN0 ( S < x -> [_ x / k ]_ C = .0. ) ) |
17 |
6 16
|
sylib |
|- ( ph -> A. x e. NN0 ( S < x -> [_ x / k ]_ C = .0. ) ) |
18 |
|
simpr |
|- ( ( ph /\ x e. NN0 ) -> x e. NN0 ) |
19 |
4
|
anim1ci |
|- ( ( ph /\ x e. NN0 ) -> ( x e. NN0 /\ A. k e. NN0 C e. B ) ) |
20 |
|
rspcsbela |
|- ( ( x e. NN0 /\ A. k e. NN0 C e. B ) -> [_ x / k ]_ C e. B ) |
21 |
19 20
|
syl |
|- ( ( ph /\ x e. NN0 ) -> [_ x / k ]_ C e. B ) |
22 |
18 21
|
jca |
|- ( ( ph /\ x e. NN0 ) -> ( x e. NN0 /\ [_ x / k ]_ C e. B ) ) |
23 |
22
|
adantr |
|- ( ( ( ph /\ x e. NN0 ) /\ [_ x / k ]_ C = .0. ) -> ( x e. NN0 /\ [_ x / k ]_ C e. B ) ) |
24 |
|
eqid |
|- ( k e. NN0 |-> C ) = ( k e. NN0 |-> C ) |
25 |
24
|
fvmpts |
|- ( ( x e. NN0 /\ [_ x / k ]_ C e. B ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) |
26 |
23 25
|
syl |
|- ( ( ( ph /\ x e. NN0 ) /\ [_ x / k ]_ C = .0. ) -> ( ( k e. NN0 |-> C ) ` x ) = [_ x / k ]_ C ) |
27 |
|
simpr |
|- ( ( ( ph /\ x e. NN0 ) /\ [_ x / k ]_ C = .0. ) -> [_ x / k ]_ C = .0. ) |
28 |
26 27
|
eqtrd |
|- ( ( ( ph /\ x e. NN0 ) /\ [_ x / k ]_ C = .0. ) -> ( ( k e. NN0 |-> C ) ` x ) = .0. ) |
29 |
28
|
ex |
|- ( ( ph /\ x e. NN0 ) -> ( [_ x / k ]_ C = .0. -> ( ( k e. NN0 |-> C ) ` x ) = .0. ) ) |
30 |
29
|
imim2d |
|- ( ( ph /\ x e. NN0 ) -> ( ( S < x -> [_ x / k ]_ C = .0. ) -> ( S < x -> ( ( k e. NN0 |-> C ) ` x ) = .0. ) ) ) |
31 |
30
|
ralimdva |
|- ( ph -> ( A. x e. NN0 ( S < x -> [_ x / k ]_ C = .0. ) -> A. x e. NN0 ( S < x -> ( ( k e. NN0 |-> C ) ` x ) = .0. ) ) ) |
32 |
17 31
|
mpd |
|- ( ph -> A. x e. NN0 ( S < x -> ( ( k e. NN0 |-> C ) ` x ) = .0. ) ) |
33 |
24
|
fmpt |
|- ( A. k e. NN0 C e. B <-> ( k e. NN0 |-> C ) : NN0 --> B ) |
34 |
4 33
|
sylib |
|- ( ph -> ( k e. NN0 |-> C ) : NN0 --> B ) |
35 |
1
|
fvexi |
|- B e. _V |
36 |
|
nn0ex |
|- NN0 e. _V |
37 |
35 36
|
pm3.2i |
|- ( B e. _V /\ NN0 e. _V ) |
38 |
|
elmapg |
|- ( ( B e. _V /\ NN0 e. _V ) -> ( ( k e. NN0 |-> C ) e. ( B ^m NN0 ) <-> ( k e. NN0 |-> C ) : NN0 --> B ) ) |
39 |
37 38
|
mp1i |
|- ( ph -> ( ( k e. NN0 |-> C ) e. ( B ^m NN0 ) <-> ( k e. NN0 |-> C ) : NN0 --> B ) ) |
40 |
34 39
|
mpbird |
|- ( ph -> ( k e. NN0 |-> C ) e. ( B ^m NN0 ) ) |
41 |
|
fz0ssnn0 |
|- ( 0 ... S ) C_ NN0 |
42 |
|
resmpt |
|- ( ( 0 ... S ) C_ NN0 -> ( ( k e. NN0 |-> C ) |` ( 0 ... S ) ) = ( k e. ( 0 ... S ) |-> C ) ) |
43 |
41 42
|
ax-mp |
|- ( ( k e. NN0 |-> C ) |` ( 0 ... S ) ) = ( k e. ( 0 ... S ) |-> C ) |
44 |
43
|
eqcomi |
|- ( k e. ( 0 ... S ) |-> C ) = ( ( k e. NN0 |-> C ) |` ( 0 ... S ) ) |
45 |
1 2 3 40 5 44
|
fsfnn0gsumfsffz |
|- ( ph -> ( A. x e. NN0 ( S < x -> ( ( k e. NN0 |-> C ) ` x ) = .0. ) -> ( G gsum ( k e. NN0 |-> C ) ) = ( G gsum ( k e. ( 0 ... S ) |-> C ) ) ) ) |
46 |
32 45
|
mpd |
|- ( ph -> ( G gsum ( k e. NN0 |-> C ) ) = ( G gsum ( k e. ( 0 ... S ) |-> C ) ) ) |