Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptnn0fzfv.b |
|- B = ( Base ` G ) |
2 |
|
gsummptnn0fzfv.0 |
|- .0. = ( 0g ` G ) |
3 |
|
gsummptnn0fzfv.g |
|- ( ph -> G e. CMnd ) |
4 |
|
gsummptnn0fzfv.f |
|- ( ph -> F e. ( B ^m NN0 ) ) |
5 |
|
gsummptnn0fzfv.s |
|- ( ph -> S e. NN0 ) |
6 |
|
gsummptnn0fzfv.u |
|- ( ph -> A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) ) |
7 |
|
elmapi |
|- ( F e. ( B ^m NN0 ) -> F : NN0 --> B ) |
8 |
|
ffvelrn |
|- ( ( F : NN0 --> B /\ k e. NN0 ) -> ( F ` k ) e. B ) |
9 |
8
|
ex |
|- ( F : NN0 --> B -> ( k e. NN0 -> ( F ` k ) e. B ) ) |
10 |
4 7 9
|
3syl |
|- ( ph -> ( k e. NN0 -> ( F ` k ) e. B ) ) |
11 |
10
|
ralrimiv |
|- ( ph -> A. k e. NN0 ( F ` k ) e. B ) |
12 |
|
breq2 |
|- ( x = k -> ( S < x <-> S < k ) ) |
13 |
|
fveqeq2 |
|- ( x = k -> ( ( F ` x ) = .0. <-> ( F ` k ) = .0. ) ) |
14 |
12 13
|
imbi12d |
|- ( x = k -> ( ( S < x -> ( F ` x ) = .0. ) <-> ( S < k -> ( F ` k ) = .0. ) ) ) |
15 |
14
|
cbvralvw |
|- ( A. x e. NN0 ( S < x -> ( F ` x ) = .0. ) <-> A. k e. NN0 ( S < k -> ( F ` k ) = .0. ) ) |
16 |
6 15
|
sylib |
|- ( ph -> A. k e. NN0 ( S < k -> ( F ` k ) = .0. ) ) |
17 |
1 2 3 11 5 16
|
gsummptnn0fz |
|- ( ph -> ( G gsum ( k e. NN0 |-> ( F ` k ) ) ) = ( G gsum ( k e. ( 0 ... S ) |-> ( F ` k ) ) ) ) |