Step |
Hyp |
Ref |
Expression |
1 |
|
gsummptshft.b |
|- B = ( Base ` G ) |
2 |
|
gsummptshft.z |
|- .0. = ( 0g ` G ) |
3 |
|
gsummptshft.g |
|- ( ph -> G e. CMnd ) |
4 |
|
gsummptshft.k |
|- ( ph -> K e. ZZ ) |
5 |
|
gsummptshft.m |
|- ( ph -> M e. ZZ ) |
6 |
|
gsummptshft.n |
|- ( ph -> N e. ZZ ) |
7 |
|
gsummptshft.a |
|- ( ( ph /\ j e. ( M ... N ) ) -> A e. B ) |
8 |
|
gsummptshft.c |
|- ( j = ( k - K ) -> A = C ) |
9 |
|
ovexd |
|- ( ph -> ( M ... N ) e. _V ) |
10 |
7
|
fmpttd |
|- ( ph -> ( j e. ( M ... N ) |-> A ) : ( M ... N ) --> B ) |
11 |
|
eqid |
|- ( j e. ( M ... N ) |-> A ) = ( j e. ( M ... N ) |-> A ) |
12 |
|
fzfid |
|- ( ph -> ( M ... N ) e. Fin ) |
13 |
2
|
fvexi |
|- .0. e. _V |
14 |
13
|
a1i |
|- ( ph -> .0. e. _V ) |
15 |
11 12 7 14
|
fsuppmptdm |
|- ( ph -> ( j e. ( M ... N ) |-> A ) finSupp .0. ) |
16 |
4 5 6
|
mptfzshft |
|- ( ph -> ( k e. ( ( M + K ) ... ( N + K ) ) |-> ( k - K ) ) : ( ( M + K ) ... ( N + K ) ) -1-1-onto-> ( M ... N ) ) |
17 |
1 2 3 9 10 15 16
|
gsumf1o |
|- ( ph -> ( G gsum ( j e. ( M ... N ) |-> A ) ) = ( G gsum ( ( j e. ( M ... N ) |-> A ) o. ( k e. ( ( M + K ) ... ( N + K ) ) |-> ( k - K ) ) ) ) ) |
18 |
|
elfzelz |
|- ( k e. ( ( M + K ) ... ( N + K ) ) -> k e. ZZ ) |
19 |
18
|
zcnd |
|- ( k e. ( ( M + K ) ... ( N + K ) ) -> k e. CC ) |
20 |
4
|
zcnd |
|- ( ph -> K e. CC ) |
21 |
|
npcan |
|- ( ( k e. CC /\ K e. CC ) -> ( ( k - K ) + K ) = k ) |
22 |
19 20 21
|
syl2anr |
|- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( ( k - K ) + K ) = k ) |
23 |
|
simpr |
|- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> k e. ( ( M + K ) ... ( N + K ) ) ) |
24 |
22 23
|
eqeltrd |
|- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( ( k - K ) + K ) e. ( ( M + K ) ... ( N + K ) ) ) |
25 |
5 6
|
jca |
|- ( ph -> ( M e. ZZ /\ N e. ZZ ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( M e. ZZ /\ N e. ZZ ) ) |
27 |
18
|
adantl |
|- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> k e. ZZ ) |
28 |
4
|
adantr |
|- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> K e. ZZ ) |
29 |
27 28
|
zsubcld |
|- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( k - K ) e. ZZ ) |
30 |
|
fzaddel |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( k - K ) e. ZZ /\ K e. ZZ ) ) -> ( ( k - K ) e. ( M ... N ) <-> ( ( k - K ) + K ) e. ( ( M + K ) ... ( N + K ) ) ) ) |
31 |
26 29 28 30
|
syl12anc |
|- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( ( k - K ) e. ( M ... N ) <-> ( ( k - K ) + K ) e. ( ( M + K ) ... ( N + K ) ) ) ) |
32 |
24 31
|
mpbird |
|- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( k - K ) e. ( M ... N ) ) |
33 |
|
eqidd |
|- ( ph -> ( k e. ( ( M + K ) ... ( N + K ) ) |-> ( k - K ) ) = ( k e. ( ( M + K ) ... ( N + K ) ) |-> ( k - K ) ) ) |
34 |
|
eqidd |
|- ( ph -> ( j e. ( M ... N ) |-> A ) = ( j e. ( M ... N ) |-> A ) ) |
35 |
32 33 34 8
|
fmptco |
|- ( ph -> ( ( j e. ( M ... N ) |-> A ) o. ( k e. ( ( M + K ) ... ( N + K ) ) |-> ( k - K ) ) ) = ( k e. ( ( M + K ) ... ( N + K ) ) |-> C ) ) |
36 |
35
|
oveq2d |
|- ( ph -> ( G gsum ( ( j e. ( M ... N ) |-> A ) o. ( k e. ( ( M + K ) ... ( N + K ) ) |-> ( k - K ) ) ) ) = ( G gsum ( k e. ( ( M + K ) ... ( N + K ) ) |-> C ) ) ) |
37 |
17 36
|
eqtrd |
|- ( ph -> ( G gsum ( j e. ( M ... N ) |-> A ) ) = ( G gsum ( k e. ( ( M + K ) ... ( N + K ) ) |-> C ) ) ) |