Metamath Proof Explorer


Theorem gsummptun

Description: Group sum of a disjoint union, whereas sums are expressed as mappings. (Contributed by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)

Ref Expression
Hypotheses gsummptun.b
|- B = ( Base ` W )
gsummptun.p
|- .+ = ( +g ` W )
gsummptun.w
|- ( ph -> W e. CMnd )
gsummptun.a
|- ( ph -> ( A u. C ) e. Fin )
gsummptun.d
|- ( ph -> ( A i^i C ) = (/) )
gsummptun.1
|- ( ( ph /\ x e. ( A u. C ) ) -> D e. B )
Assertion gsummptun
|- ( ph -> ( W gsum ( x e. ( A u. C ) |-> D ) ) = ( ( W gsum ( x e. A |-> D ) ) .+ ( W gsum ( x e. C |-> D ) ) ) )

Proof

Step Hyp Ref Expression
1 gsummptun.b
 |-  B = ( Base ` W )
2 gsummptun.p
 |-  .+ = ( +g ` W )
3 gsummptun.w
 |-  ( ph -> W e. CMnd )
4 gsummptun.a
 |-  ( ph -> ( A u. C ) e. Fin )
5 gsummptun.d
 |-  ( ph -> ( A i^i C ) = (/) )
6 gsummptun.1
 |-  ( ( ph /\ x e. ( A u. C ) ) -> D e. B )
7 eqidd
 |-  ( ph -> ( A u. C ) = ( A u. C ) )
8 1 2 3 4 6 5 7 gsummptfidmsplit
 |-  ( ph -> ( W gsum ( x e. ( A u. C ) |-> D ) ) = ( ( W gsum ( x e. A |-> D ) ) .+ ( W gsum ( x e. C |-> D ) ) ) )