Description: Group sum of a disjoint union, whereas sums are expressed as mappings. (Contributed by Thierry Arnoux, 28-Mar-2018) (Proof shortened by AV, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsummptun.b | |- B = ( Base ` W ) |
|
gsummptun.p | |- .+ = ( +g ` W ) |
||
gsummptun.w | |- ( ph -> W e. CMnd ) |
||
gsummptun.a | |- ( ph -> ( A u. C ) e. Fin ) |
||
gsummptun.d | |- ( ph -> ( A i^i C ) = (/) ) |
||
gsummptun.1 | |- ( ( ph /\ x e. ( A u. C ) ) -> D e. B ) |
||
Assertion | gsummptun | |- ( ph -> ( W gsum ( x e. ( A u. C ) |-> D ) ) = ( ( W gsum ( x e. A |-> D ) ) .+ ( W gsum ( x e. C |-> D ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptun.b | |- B = ( Base ` W ) |
|
2 | gsummptun.p | |- .+ = ( +g ` W ) |
|
3 | gsummptun.w | |- ( ph -> W e. CMnd ) |
|
4 | gsummptun.a | |- ( ph -> ( A u. C ) e. Fin ) |
|
5 | gsummptun.d | |- ( ph -> ( A i^i C ) = (/) ) |
|
6 | gsummptun.1 | |- ( ( ph /\ x e. ( A u. C ) ) -> D e. B ) |
|
7 | eqidd | |- ( ph -> ( A u. C ) = ( A u. C ) ) |
|
8 | 1 2 3 4 6 5 7 | gsummptfidmsplit | |- ( ph -> ( W gsum ( x e. ( A u. C ) |-> D ) ) = ( ( W gsum ( x e. A |-> D ) ) .+ ( W gsum ( x e. C |-> D ) ) ) ) |