| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummulc1.b |  |-  B = ( Base ` R ) | 
						
							| 2 |  | gsummulc1.z |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | gsummulc1.t |  |-  .x. = ( .r ` R ) | 
						
							| 4 |  | gsummulc1.r |  |-  ( ph -> R e. Ring ) | 
						
							| 5 |  | gsummulc1.a |  |-  ( ph -> A e. V ) | 
						
							| 6 |  | gsummulc1.y |  |-  ( ph -> Y e. B ) | 
						
							| 7 |  | gsummulc1.x |  |-  ( ( ph /\ k e. A ) -> X e. B ) | 
						
							| 8 |  | gsummulc1.n |  |-  ( ph -> ( k e. A |-> X ) finSupp .0. ) | 
						
							| 9 | 4 | ringcmnd |  |-  ( ph -> R e. CMnd ) | 
						
							| 10 |  | ringmnd |  |-  ( R e. Ring -> R e. Mnd ) | 
						
							| 11 | 4 10 | syl |  |-  ( ph -> R e. Mnd ) | 
						
							| 12 | 1 3 | ringrghm |  |-  ( ( R e. Ring /\ Y e. B ) -> ( x e. B |-> ( x .x. Y ) ) e. ( R GrpHom R ) ) | 
						
							| 13 | 4 6 12 | syl2anc |  |-  ( ph -> ( x e. B |-> ( x .x. Y ) ) e. ( R GrpHom R ) ) | 
						
							| 14 |  | ghmmhm |  |-  ( ( x e. B |-> ( x .x. Y ) ) e. ( R GrpHom R ) -> ( x e. B |-> ( x .x. Y ) ) e. ( R MndHom R ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ph -> ( x e. B |-> ( x .x. Y ) ) e. ( R MndHom R ) ) | 
						
							| 16 |  | oveq1 |  |-  ( x = X -> ( x .x. Y ) = ( X .x. Y ) ) | 
						
							| 17 |  | oveq1 |  |-  ( x = ( R gsum ( k e. A |-> X ) ) -> ( x .x. Y ) = ( ( R gsum ( k e. A |-> X ) ) .x. Y ) ) | 
						
							| 18 | 1 2 9 11 5 15 7 8 16 17 | gsummhm2 |  |-  ( ph -> ( R gsum ( k e. A |-> ( X .x. Y ) ) ) = ( ( R gsum ( k e. A |-> X ) ) .x. Y ) ) |