| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummulg.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | gsummulg.z |  |-  .0. = ( 0g ` G ) | 
						
							| 3 |  | gsummulg.t |  |-  .x. = ( .g ` G ) | 
						
							| 4 |  | gsummulg.a |  |-  ( ph -> A e. V ) | 
						
							| 5 |  | gsummulg.f |  |-  ( ( ph /\ k e. A ) -> X e. B ) | 
						
							| 6 |  | gsummulg.w |  |-  ( ph -> ( k e. A |-> X ) finSupp .0. ) | 
						
							| 7 |  | gsummulglem.g |  |-  ( ph -> G e. CMnd ) | 
						
							| 8 |  | gsummulglem.n |  |-  ( ph -> N e. ZZ ) | 
						
							| 9 |  | gsummulglem.o |  |-  ( ph -> ( G e. Abel \/ N e. NN0 ) ) | 
						
							| 10 |  | cmnmnd |  |-  ( G e. CMnd -> G e. Mnd ) | 
						
							| 11 | 7 10 | syl |  |-  ( ph -> G e. Mnd ) | 
						
							| 12 | 1 3 | mulgghm |  |-  ( ( G e. Abel /\ N e. ZZ ) -> ( x e. B |-> ( N .x. x ) ) e. ( G GrpHom G ) ) | 
						
							| 13 |  | ghmmhm |  |-  ( ( x e. B |-> ( N .x. x ) ) e. ( G GrpHom G ) -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( G e. Abel /\ N e. ZZ ) -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) | 
						
							| 15 | 14 | expcom |  |-  ( N e. ZZ -> ( G e. Abel -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) ) | 
						
							| 16 | 8 15 | syl |  |-  ( ph -> ( G e. Abel -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) ) | 
						
							| 17 | 1 3 | mulgmhm |  |-  ( ( G e. CMnd /\ N e. NN0 ) -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) | 
						
							| 18 | 17 | ex |  |-  ( G e. CMnd -> ( N e. NN0 -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) ) | 
						
							| 19 | 7 18 | syl |  |-  ( ph -> ( N e. NN0 -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) ) | 
						
							| 20 | 16 19 9 | mpjaod |  |-  ( ph -> ( x e. B |-> ( N .x. x ) ) e. ( G MndHom G ) ) | 
						
							| 21 |  | oveq2 |  |-  ( x = X -> ( N .x. x ) = ( N .x. X ) ) | 
						
							| 22 |  | oveq2 |  |-  ( x = ( G gsum ( k e. A |-> X ) ) -> ( N .x. x ) = ( N .x. ( G gsum ( k e. A |-> X ) ) ) ) | 
						
							| 23 | 1 2 7 11 4 20 5 6 21 22 | gsummhm2 |  |-  ( ph -> ( G gsum ( k e. A |-> ( N .x. X ) ) ) = ( N .x. ( G gsum ( k e. A |-> X ) ) ) ) |